• 제목/요약/키워드: matching priors

검색결과 58건 처리시간 0.02초

NONINFORMATIVE PRIORS FOR LINEAR COMBINATION OF THE INDEPENDENT NORMAL MEANS

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.203-218
    • /
    • 2004
  • In this paper, we develop the matching priors and the reference priors for linear combination of the means under the normal populations with equal variances. We prove that the matching priors are actually the second order matching priors and reveal that the second order matching priors match alternative coverage probabilities up to the second order (Mukerjee and Reid, 1999) and also, are HPD matching priors. It turns out that among all of the reference priors, one-at-a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense. We compute Bayesian credible intervals for linear combination of the means based on the reference priors.

Developing Noninformative Priors for Parallel-Line Bioassay

  • Kim, YeongHwa;Heo, JungEun
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.401-410
    • /
    • 2002
  • This paper revisits parallel-line bioassay problem, from a Bayesian point of view using noninformative priors such as Jeffreys' prior, reference priors, and probability matching priors. After finding the orthogonal transformation, the class of first order and second order probability matching priors are derived. Jeffreys' prior and reference priors are derived also. Numerical examples are given to show the effectiveness of noninformative priors.

Development of Matching Priors for P(X < Y) in Exprnential dlstributions

  • Lee, Gunhee
    • Journal of the Korean Statistical Society
    • /
    • 제27권4호
    • /
    • pp.421-433
    • /
    • 1998
  • In this paper, matching priors for P(X < Y) are investigated when both distributions are exponential distributions. Two recent approaches for finding noninformative priors are introduced. The first one is the verger and Bernardo's forward and backward reference priors that maximizes the expected Kullback-Liebler Divergence between posterior and prior density. The second one is the matching prior identified by matching the one sided posterior credible interval with the frequentist's desired confidence level. The general forms of the second- order matching prior are presented so that the one sided posterior credible intervals agree with the frequentist's desired confidence levels up to O(n$^{-1}$ ). The frequentist coverage probabilities of confidence sets based on several noninformative priors are compared for small sample sizes via the Monte-Carlo simulation.

  • PDF

Noninformative Priors for the Common Intraclass Correlation Coefficient

  • Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.189-199
    • /
    • 2011
  • In this paper, we develop the noninformative priors for the common intraclass correlation coefficient when independent samples drawn from multivariate normal populations. We derive the first and second order matching priors. We reveal that the second order matching prior dose not match alternative coverage probabilities up to the second order and is not a HPD matching prior. It turns out that among all of the reference priors, one-at-a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that one-at-a-time reference prior performs better than the other reference priors in terms of matching the target coverage probabilities in a frequentist sense.

Noninformative Priors for the Ratio of the Lognormal Means with Equal Variances

  • Lee, Seung-A;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제14권3호
    • /
    • pp.633-640
    • /
    • 2007
  • We develop noninformative priors for the ratio of the lognormal means in equal variances case. The Jeffreys' prior and reference priors are derived. We find a first order matching prior and a second order matching prior. It turns out that Jeffreys' prior and all of the reference priors are first order matching priors and in particular, one-at-a-time reference prior is a second order matching prior. One-at-a-time reference prior meets very well the target coverage probabilities. We consider the bioequivalence problem. We calculate the posterior probabilities of the hypotheses and Bayes factors under Jeffreys' prior, reference prior and matching prior using a real-life example.

BAYESIAN TEST FOR THE EQUALITY OF THE MEANS AND VARIANCES OF THE TWO NORMAL POPULATIONS WITH VARIANCES RELATED TO THE MEANS USING NONINFORMATIVE PRIORS

  • Kim, Dal-Ho;Kang, Sang-Gil;Lee, Woo-Dong
    • Journal of the Korean Statistical Society
    • /
    • 제32권3호
    • /
    • pp.271-288
    • /
    • 2003
  • In this paper, when the variance of the normal distribution is related to the mean, we develop noninformative priors such as matching priors and reference priors. We prove that the second order matching prior matches alternative coverage probabilities up to the same order and also it is a HPD matching prior. It turns out that one-at-a-time reference prior satisfies a second order matching criterion. Then using these noninformative priors, we develop a Bayesian test procedure for the equality of the means and variances of two independent normal distributions using fractional Bayes factor. Some simulation study is performed, and a real data example is also provided.

DEVELOPING NONINFORMATIVE PRIORS FOR THE FAMILIAL DATA

  • Heo, Jung-Eun;Kim, Yeong-Hwa
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.77-91
    • /
    • 2007
  • This paper considers development of noninformative priors for the familial data when the families have equal number of offspring. Several noninformative priors including the widely used Jeffreys' prior as well as the different reference priors are derived. Also, a simultaneously-marginally-probability-matching prior is considered and probability matching priors are derived when the parameter of interest is inter- or intra-class correlation coefficient. The simulation study implemented by Gibbs sampler shows that two-group reference prior is slightly edge over the others in terms of coverage probability.

Noninformative priors for the reliability function of two-parameter exponential distribution

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권2호
    • /
    • pp.361-369
    • /
    • 2011
  • In this paper, we develop the reference and the matching priors for the reliability function of two-parameter exponential distribution. We derive the reference priors and the matching prior, and prove the propriety of joint posterior distribution under the general prior including the reference priors and the matching prior. Through the sim-ulation study, we show that the proposed reference priors match the target coverage probabilities in a frequentist sense.

Noninformative Priors for the Stress-Strength Reliability in the Generalized Exponential Distributions

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Communications for Statistical Applications and Methods
    • /
    • 제18권4호
    • /
    • pp.467-475
    • /
    • 2011
  • This paper develops the noninformative priors for the stress-strength reliability from one parameter generalized exponential distributions. When this reliability is a parameter of interest, we develop the first, second order matching priors, reference priors in its order of importance in parameters and Jeffreys' prior. We reveal that these probability matching priors are not the alternative coverage probability matching prior or a highest posterior density matching prior, a cumulative distribution function matching prior. In addition, we reveal that the one-at-a-time reference prior and Jeffreys' prior are actually a second order matching prior. We show that the proposed reference prior matches the target coverage probabilities in a frequentist sense through a simulation study and a provided example.

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권1호
    • /
    • pp.243-253
    • /
    • 2015
  • In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.