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DEVELOPING NONINFORMATIVE PRIORS FOR THE
FAMILIAL DATA

JUNGEUN HEO! AND YEONG-HwA Kim?

ABSTRACT

This paper considers development of noninformative priors for the famil-
ial data when the families have equal number of offspring. Several noninfor-
mative priors including the widely used Jeffreys’ prior as well as the different
reference priors are derived. Also, a simultaneously-marginally-probability-
matching prior is considered and probability matching priors are derived
when the parameter of interest is inter- or intra-class correlation coefficient.
The simulation study implemented by Gibbs sampler shows that two-group
reference prior is slightly edge over the others in terms of coverage probabil-
ity.
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Keywords. Familial data, Gibbs sampler, interclass correlation coefficient, intraclass
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1. INTRODUCTION

In the analysis of familial data the primary aim is to estimate the degree of
resemblance between family members which is measured by a parent-child cor-
relation, the interclass correlation coefficient, and correlation between siblings,
the intraclass correlation coefficient. Several estimates of these correlations have
been proposed in the literature. In particular, Rosner et al. (1977) gave the
maximum likelihood estimates when the sib sizes are equal. However, when the
sib sizes are not equal, Rosner (1979) proposed an algorithm for finding the max-
imum likelihood estimates which involves iterative implementation and may not
even converge for some sets of data. Mak and Ng (1981) used the linear model
approach of Kempthorne and Tandon (1953) to obtain the maximum likelihood
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estimates. However, nothing is known about the convergence of the procedure.
Because families have varying number of offspring, the maximum likelihood es-
timators of correlations are difficult to compute. To avoid this difficulty, several
estimators have been proposed. For example, Srivastava (1984) transformed the
data and then proposed two alternative estimators. Srivastava and Keen (1988)
developed a noniterative method for estimating the interclass correlation coef-
ficient which is derived from the technique of weighted sum of squares. Also,
Gleser (1992) provided the formulas for the maximum likelihood estimators of
the parameters based on samples from each family, and then combining them in
some arbitrary way over the different families.

In this paper, we attempt the Bayesian analysis of familial data in the case
when the families considered have equal number of offspring. To this end, we
have used certain noninformative priors including the widely used Jeffreys’ prior
as well as the different reference priors of Berger and Bernardo (1989, 1992a,
1992b). Also, probability matching priors are considered. In Section 2, we find
information matrix and the Jeffreys’ prior, and also the different reference priors.
Also, a simultaneously-marginally-probability-matching prior is derived which is
the same as the five group reference prior. In Section 3, we establish the propriety
of posteriors under a general class of priors which includes two-group and five-
group reference priors and Jeffreys’ prior under certain conditions. In Section
4, some simulations are undertaken for comparing reference priors with Jeffreys’
prior. The Bayesian procedure is implemented by Gibbs sampler.

2. DEVELOPMENT OF NONINFORMATIVE PRIORS

2.1. Fisher information matriz and Jeffreys’ prior

Suppose that there is a family with & offspring, let Y denote the measurement
on the mother and X = (z1,x3,...,x) be the vector of measurement on the k
offspring. Further 15 denotes a k x 1 vector of ones, I a k x k identity matrix
and Jj a k x k matrix containing only ones. It is assumed that

Y N U o‘fn pmsamaslf
~ 3 2 ?
X pslg PmsOmOsly o {(1 — pss) I + PssJk:}

where p,, is an interclass correlation coefficient and p,; is an intraclass correlation
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coefficient. Letting

2n 212} _ [ o2, PmsOm0s1y

3=
201 X PmsOm0Osly 0'3 {(1 - Pss)Ilc + PssJk}

| e
then the joint pdf of Y and X for the assumed familial model is given by

f(y7 CB, ,U/m7 )usv Um, 087 pm37 pss)

k1 1 1 _
= (2m)" 2 |X| 2eXp{—§(y—mn,w—uglk)T2 1(y—um,m—uslk)}

_ktr 1 1 _ -
= (2m)” 2 |Z|72 eXp{ T3 [(y - #m)22111.2 + (- ,Uslk)Tzzgl.l(m — pslg)

2y = i) B T8 (= — i)},

where 3119 = X1 — 21222_21221 and X9 = Do — 22121_11212 .

In this case,

12| = |S11a| [Baa| = 02,05 (1~ pss)* L+ (k — 1)pss — kb,

- _ 1+(k—1)p
by 1 — 2[ ss j|
12 = Om 1+ (k - 1)/)35 - kp?ns ,
_ 1 pss — P
» 1 — l:I . S8 ms ]7
217 31— pea) UF T 14 (k— 1)pas — kip2yg
21_1]%221222_21 - L 1{-

UmGS[l + (k= 1)pss — kp?ns]
Note that in order that all covariance matrices in (2.1) are positive definite, it

must be assumed that

1 2 1
O'Envo-.g>07 __‘_<Pss<1, M<_

k-1 1—pss ~ k

The stronger conditions 0 < pgs < 1, p2,, < pss are imposed by Srivastava and
Keen (1988).

On simplification, the above reduces to

FY, 5 i, sy Om,y O, Pms, Pss)

= {(27r0,2n)*% exp [ _ Y= pm) ,u,m)Q] }

202,
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X {(27r0§(1 - pss))_% exp [_ Zzi;zgl(ix—i;:))j] }

1

2

X [2#03(1 + (k= 1)pss — kp?ns)]

X{e"p [ T 2021+ (k —kl)pss — kpZ,,] ((‘E ~Hs) — &;‘fs‘(y - “m)ﬂ }

Consider the following reparameterization of (tm, tis, Om, Ts, Pms, Pss)-

8= Pmso's,
Om
0-% = 03(1 - pss)a

U% = oL+ (k= 1)pss — kp?ns]'
With this transformation, the joint pdf of Y and X reduces to

f(yvm§ﬂm,NSa,370m,01702)
2 k 72
_ {(27‘_0_2 Y% exp [_ (y — pim) ]}{(mf%)—% exp [_ Dim1 (% — F) ]}

m 202, 202
x{(27m%)‘% exp [— ;T%(f —ps — By — ,um))Z] }

As one knows, Jeffreys’ prior is proportional to the positive square root of the de-
terminant of the Fisher information matrix. The derivation of the reference priors
also stems from the same matrix. Thus, we find the per unit Fisher information
matrix under the new parametrization @ = (um, ts, 8, 0m, 01, 02) as

* T
I1(0) = I3 0* , (2.2)
0 I
where
2
L [EE 2] ke o kg 2
Iy=|"" x5 £ | Ta=diag)— —, 7 3 (-
—3Z 2 o5 O oy ob

Thus, Jeffrey’ prior is given by

77(8) x ot tas®

REMARK 2.1. Following Bernardo (1979), if the parameter of interest is
(no nuisance parameter), then Jeffreys’ prior is a reference prior.
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2.2. Reference priors

In view of the form of the information matrix as given in (2.2), by tak-
ing rectangular compacts for (um, s, 5, 0m,01,02) it follows from Berger and
Bernardo (1992a) or Datta and Ghosh (1995) that the five group reference prior
for {(pm, ws), B, 0m, 01,02} is wR5(0) o 0;1101’102*1 while, the two group refer-
ence prior with the ordering {(pm, pis), (8, Om, 01, 02)} or {(B, Om, 01, 2), (fm, ts)}
is mRa(6) af102_2.

REMARK 2.2. Due to invariance of noninformative priors (Datta and Ghosh,
1996; Mukerjee and Ghosh, 1997), the five group reference prior, the two group
reference prior and Jeffreys’ prior in (m, tis, Om, Os, Pms, Pss) Parametrization are
given respectively by

TR5 X ‘772( - PSS)_I[l + 2(k — Dpss][1+ (k — 1)pss — kpzns]_la

_3
TRy X 0 05 (1 = pss) TH1 4 2(k — D)pgs][1 + (k — 1)pss — kpms) 2,
TJ X O ‘7 (1 ~ pss)” [1 +2(k — Dpss][1 + (k — 1)pss — kpfns]d-
2.3. Probability matching priors
For the specific familial data, the parameter of interest is 8 = (0y,...,65) =

(Hm, thsy By Om, 01,02). We find a prior which satisfies probability matching cri-
terion separately for each component of the parameter vector 8. Such a prior
is referred to as a simultaneously-marginally-probability-matching prior for the
different components of 6. From Datta and Ghosh (1995), such a prior m(8) for
the parametric function £(8) = (£,(6),...,ts(8))" is found as a solution of

T

LA
;;ﬁ nii(@)m(@)} =0 j=1,...,s, (2.3)
where

1(6) = (111(60),....m3p(0) = { VIO OV, (6)}
and
Vi,(8) = (0;(0)/86y,...,0t;(6)/38,) j=1,....s.

For the specific problem, t(8) = (01,...,06) = (lm, its, B, 0m, 01, 02). From
Datta and Ghosh (1995), one has the following theorem.
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THEOREM 2.1. A simultaneously-marginally-probability-matching prior for
each component of @ is given by

1 1

7(0) x o o oy,

which is same as the five group reference prior wgs.

PROOF. Let t;(8)=06;, j=1,...,6 and 7(8) otortay! . Then

771(0) = Um(la 67 Oa 07 Oa O)Ta
_1
m(6) = (802, (03 + kG%02)/k, 0, 0, 0, 0)' (03 + kB%%) 2 VE,
T
m(8) = (0, 0, ==, 0, 0, 0, 0) /VE,
Om

14(8) = (0, 0, 0, am, 0, 0)T/V2,

ns(8) = (0, 0, 0, 0, a1,0)T/+/2(k — 1),
and n6(0) = (0, 0, 0, 0, 0, o2)T /V2.

Thus (2.3) holds and 7(8) x 6,107 05! is a simultaneously-marginally-probabilit
y-matching prior. d

3. PROPRIETY OF THE POSTERIOR DISTRIBUTIONS

First we find the joint posterior distribution of (tm, tis, Om, Ts, Pms, Pss) under
the five group reference prior. Suppose (Y7, Xl)T, (YZ,XQ)T, ooy (Ya, Xn)T are
i.i.d. random vectors from the above familial data. Then the likelihood function
is given by

L(,Ll/m, Hs; /Ba Om,01, 02)
7
x {onrexp [~ (202)71 Y (v — mm)?] }
j=1

i=1 j=1

x{o7" exp | - k(209)7! > (@ — )~ Blus ) |} -
j=1

Writing Y = (Y1,...,Y,) and X = (X3,...,Xn), under the five group refer-
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ence prior, the joint posterior density is given by

7TR5(,LLm7 Ms, /67 Om, 01, 02'% (D)

j=1

i—1 j=1
(o™ Texp [ K(203) 1Y (@ — ) Bl —wm) ]}
j=1

The following theorem proves the propriety of RS (ms s, B, Om, 01, 02 | y, ).

THEOREM 3.1. 7grs(im, is, B, Om, 01, 02|y, ) 18 proper.

Proor. First we write

i [(-’fj —ps) — By — um)r

= n,uz — 2/‘32 [il_f!j - Hm)] Z [ T; — Bly; — :“m)]z

j=1

= n{ﬂs - % i: [a‘cj = Bly; — um)]} + Z: [ﬂ‘cy — Bly; - Mm)]z

n 2
1 -
_E{ > [fl?j - Bly; - P'm)]} :
j=1
Integration with respect to us, the joint posterior of (tim, B,0m,01,02) is given

by

7"'RS(Mma B,0m, 01, U2ly1 a:)

x {ofn”_l exp [ —(202)71 i (yj — Nm)ﬂ }
j=1

i=1 j=1

{02 exp{ k(202 {Z Mm)]2
n 2

_% [Z[a‘;j — Bly; — Mmﬂ] H} '

J=1
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Now,
3 o ot )] - 1[0 - ]
= Z;w? - zﬂz";@.(yj = pim) +62_§n;(yj — ) = [~ 6@~ pom)|
j= = =
- 62[2(113' — pm)? = (5 = im)’]
—w[é@(y, pim) = (G — pim) | + ; (5 - &)*
Sy Tl 0

7

1

2
[ShaE -9 -9 o
-9 * )

Thus, after integrating with respect to 3, the joint posterior of (tm,om, o1, 02)
is obtained as

7TR5(/~Lma Om, 01, U2|y7 93)

o« {ozrtexp [~ o2) 30— ]}

j=1

N {Gl—n(k—l)—l exp [_ (202)1 i Zn: (ij — :Ej)z] }
i=1 j=1

X {05"” exp [ — k(202)1 (Sm - ;—i)] }’

2 - s _ 12
where Sz = Z?:l (Z;—Z)%, Say = Z?:l(xj_x)(yj_y)v and Syy = Z?:l (y;—9)"
Integration with respect to un, yields the joint posterior of (o, 01,02) as

7r5(Om, 01, 02|Y, )

o {orrexp |~ (202)78, ] o™V exp [ - (201) S5 (e - a7}

i1 j=1
X {02_("_1) exp [ — k(202)71 (S’m — g—fz)] }
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Note now that o,,, 01, and o5 have independent inverse gamma posteriors. Hence,
the joint posterior density of (um, ps,3,0m,01,02) under five group reference
prior is integrable and the result follows. U

Second, we consider the joint posterior pdf of (fm, its, 8, Om, 01, 02) under two
group reference prior. Here the joint posterior density is given by

TR2 (s s, By Om, 01, 02|Y, )

x {a;ﬁ exp [— (207,)7 Zn: (ys — ﬂmﬂ }
j=1

x {Ufn(k_l)_l exp [ —2o1) 7 YD (- fj)g] }
i=1 j=1
o2 exp [ - @o8) 3 (@ - )~ 8005 — )] |}

j=1
As in Theorem 3.1, it can be checked that

7TR2(O'm, 0y, GQ\yv w)
o {U;Z"H exp { — (20,2,})*15%] }

% {Ul—n(k—l)‘1 exp {— (20871 i En:(xij - 9733‘)2} }

i=1 j=1

x{agn exp [— k(203)71 <Sm - g—fz)] }

The propriety of mra(tm, tis, B, Om, 01, 02) immediately follows.
Finally, we consider the joint posterior pdf of (m, s, 3,0m,01,02) under
Jeffreys’ prior. Under the Jeffreys’ prior, the joint posterior pdf is given by

WJ(,U'ma Hs, Ba Om,01, 0-2’y7 IB)

x {a;"“l exp [ ~(207)7" i (ys — “mﬂ }

o™ e [ - o) Y (w — )}

oz texp [~ k2ol Y (5, ) — By~ )]}
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As before,

7rJ(0'ma oy, G2|ya ﬂ.’:)

x {U;Ln exp [— (2031)_151/4}
kE n
X {ol_n(k_l)_l exp [ - (209)7" Z Z(:c“ - Ej)2] }
i=1 j=1

SZ
—n—1 _ 2y—1 _ Pay
x{02 exp [ k(203) (S’m Syy)]}
and the propriety of 7j(tim, tis, B, Om, 01,02 | y, ) follows.

4. SIMULATION STUDY

4.1. Method

In this section we compare two group (mwgz) and five group (mwgs) reference
priors along with Jeffreys’ prior (7;). We accomplish this by calculating the fre-
quentist coverage probability of the posterior tail probabilities of each component
of the parameter vector 81 = (lm, tbs, Om, Os, Pms, Pss)- For example, we consider
the parameter p,,s which is often of great interest to biological and medical re-
searchers.

The computing work is accomplished in three stages. In the first stage, we
generate 1,000 random samples of size n = 20 (or) 50 from the familial distri-
butions. The second stage consists of computation of posterior a-quantile of the
parameter for each of 1,000 sets of random samples using the Gibbs sampler. In
the third stage, we compute the coverage probability.

As discussed above, the Gibbs sampler is used to compute the posterior a-
quantiles of the parameters given (Y7, X1)7, (Y2, X2)T, ..., (Yn,Xn)T. To this
end, we need to generate random variables from the marginal posterior distribu-
tion of each component of the parameter vector 8. Such distributions are analyt-
ically intractable and requires high-dimensional numerical integration. Instead,
we adopt Monte Carlo integration and use Gibbs sampling. Gibbs sampling, orig-
inally introduced by Geman and Geman (1984) and more recently popularized by
Gelfand and Smith (1990), is a Markovian updating scheme that requires sam-
pling from full conditional distributions. In implementing the Gibbs sampler, we
follow the recommendation of Gelman and Rubin (1992) and run n(> 2) parallel
chains, each for 2d iterations with starting points drawn from an over dispersed
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distribution. But to diminish the effects of the starting distributions, the first
d iterations of each chain are discarded. After d iterations, all subsequent it-
erates are retained for finding the desired posterior distributions as well as for
monitoring the convergence of the Gibbs sampler.

For the given familial data, to implement and monitor the convergence of
the Gibbs sampler, we consider n = 10 parallel chains, each for 2d = 400 it-
erations with starting point drawn from an over-dispersed distribution. The

implementation requires generation of samples from the following full conditional
distributions.

(I) Full conditionals under the two group reference prior:

)U/mly) Hs, 167 Om,01,02
j k kB (=
=1 (Ey;]; + g_gyj - ;:; (z; - “8)> n nkf\ "
n/o2, +nkp? /o3 ’ ’

/‘Ls|ya Hmyy Ba Om,01,02

~ N

2
g3

~N n’IZ{fj—ﬂ(yj—um)} i

i=1

B!’!J: Hmy sy Om, 01,02
-1

~N Zj:l (yj — bm) (Zj — ps) ﬁ Z (y; — Mm)2

2 ’ 2
Z?:l (yj — pm) 92 75

2
Um|ya MHm, s, ﬁv J1,02

n+1 1 2
~ Inverse Gamma '3 Z (Y5 — wm)*|

2
Uliy7 Hmy s, ﬂa Om, 02

~ Inverse Gamma

2
U2|yaﬂmausaﬁ’UMao-l

~ Inverse Gamma
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(II) Full conditionals under the five group reference prior:

pmlY, s

~ N
Ws|Ys tm

~N
BlY, pm,

~ N

7ﬁaam701a02
i k k, =
;'l:l (%Jr;gyj—?ff(ﬂﬂj_#s)) (”7:),—4_
njo2, +nkB?/o? "\ o2,

,,B,O'm,Ul,O'Q
1 - ‘7%
nt Yy {7 By - )} 2|
j=1

s, Tm,T1,02

S (5 — ) @5 — 1)k
L E?:l (y; — :“m)2 3

afnly,um, Ms,/g’ 01,02

~ Inverse Gamma

J%Iynum

o

N =

INgE
~
&

=

3
g
N

nkB? -
o3 ’

=
s sy By Om, 02
i k n
'I’L(k - 1) 1 _\2
~ Inverse Gamma, 5 ' 3 Z Z (zij — Z5)° |,
L i=1 j=1
s Ms, By Om, 01

U%!y,,um

n
~ Inverse Gamma )

(IIT) Full conditionals under the Jeffreys’ prior:

P |Y, s
~ N

,U/sly,,u/m

~ N

1 B,0m, 01,02
[ (f—i + 22y — o3 (T — #s)) ( n o
i njo2, +nkB3?/al "\ o2,
,B,0m, 01,02

n 2
n_lz{jj——/@(yj—ﬂm)} ) % )

j=1

*S

2
a3
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/B‘ya My Bsy Tm,y 01,02

Z?:l (i — tm) (Zj — ps) ﬁ i
S i) |3

2
Um‘yauma/*’/sng’o-lvo-Z

~N

n 1 " 2
~ Inverse Gamma, 503 Z (Y5 — m)” |

.
il
R

U%|y’,um7:usvﬂv Om,; 02
E n
nk-1) 1 = \2
~ Inverse Gamma, | ———+% , 3 ZZ (@i —%5)" |

2
0-2‘y’,umnu'sa/670-7nval

_ 2
~ Inverse Gamma 5 5 Jz_; {(Z; — ps) — B (yj — pm)}
4.2. Results

The following 3 tables provide the estimated tail probabilities of the posterior
distributions of §; under the two-group and five-group reference prior and Jeffreys’
prior when the frequentist tail probability is 0.95. We generate random samples
of sizes n = 20, and 50 from the familial distribution. Throughout, we take
tm = s = 0 and o, = o5 = 1.0, but take different values of (pms, pss) =
{(0.3,0.7),(0.1,0.9), (0.5,0.5) }.

The results in tables are shown for three different values of (pms, pss) that
two group reference prior is slightly edge over the others in terms of the coverage
probability satisfying 0 < pss < 1 and p2,, < pss -

5. CONCLUDING REMARKS

In this paper, we have developed noninformative priors for the familial data
when families have the same number of offspring. Two- and five-group reference
priors have been derived along with Jeffreys’ prior. A five group reference prior
is derived which is the same as a simultaneously-marginally-probability matching
prior.



90 J. HEO AND Y. H. KM

TABLE 4.1 Estimated frequentist coverage probability of the posterior tail probabilities of each
component of 8y, when pms=0.1 and p;s=0.9

n =20 n =50

TR2 TR5 Ty TR2 TR5 mJ

bwm | 0.958 | 0.957 | 0.950 (| 0.940 | 0.955 | 0.948
ps | 0.964 | 0.963 | 0.977 || 0.957 | 0.950 | 0.969
om | 0.957 | 0.955 | 0.945 (| 0.942 | 0.951 | 0.942
os | 0.919 | 0.936 | 0.905 || 0.956 | 0.951 | 0.941
pms | 0.954 | 0.961 | 0.962 || 0.959 | 0.949 | 0.954
pss | 0.937 | 0.935 | 0.925 (| 0.957 | 0.946 | 0.946

TABLE 4.2 Estimated frequentist coverage probability of the Posterior tail probabilities of each
component of @1, when pms;=0.3 and pss=0.7

n =20 n = 50

TR2 TRS Ty TR2 TR5 Ty

pm | 0.906 | 0.917 | 0.908 ([ 0.884 { 0.864 | 0.883
ts | 0.951 | 0.953 | 0.959 || 0.941 | 0.958 | 0.961
om | 0.932 | 0.959 | 0.951 (| 0.940 | 0.945 | 0.956
os | 0.938 | 0.938 | 0.915 || 0.942 | 0.935 | 0.924
pms | 0.959 | 0.949 | 0.958 || 0.955 | 0.945 | 0.955
pss | 0.950 | 0.956 [ 0.928 {| 0.955 | 0.939 | 0.949

TABLE 4.3 Estimated frequentist coverage probability of the posterior tail probabilities of each
component of 01, when pms=0.5 and pss=0.5

n =20 n = 50

TR2 MRS Ty TR2 TR5 T

pm | 0.805 | 0.833 | 0.811 (| 0.807 | 0.778 | 0.789
ps | 0.891 | 0.896 | 0.908 || 0.909 | 0.864 | 0.900
om | 0.940 | 0.926 | 0.935 || 0.955 | 0.958 | 0.958
os | 0.945 | 0.936 | 0.926 {I 0.942 | 0.950 | 0.944
pms | 0.945 | 0.929 | 0.960 || 0.955 | 0.967 | 0.957
pss | 0.959 | 0.940 | 0.934 || 0.948 | 0.963 | 0.948
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