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Noninformative Priors for the Common Intraclass
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Abstract

In this paper, we develop the noninformative priors for the common intraclass correlation coefficient when
independent samples drawn from multivariate normal populations. We derive the first and second order matching
priors. We reveal that the second order matching prior dose not match alternative coverage probabilities up to
the second order and is not a HPD matching prior. It turns out that among all of the reference priors, one-at-
a-time reference prior satisfies a second order matching criterion. Our simulation study indicates that one-at-
a-time reference prior performs better than the other reference priors in terms of matching the target coverage
probabilities in a frequentist sense.

Keywords: Frequentist coverage, intraclass correlation coefficient, matching priors, multivariate
normal, reference priors.

1. Introduction

The intraclass correlation coefficient p is used to measure the degree of intrafamily resemblance with
respect to characteristics such as blood pressure, cholesterol, weight, height, stature and lung capacity.
Statistical inference concerning p for a single sample problem based on a normal distribution has
been studied by many authors. However, its extension to multisample problems based on several
multivariate normal distributions has received a little attention.

For testing the equality of two intraclass correlation coefficients based on two independent muti-
normal samples, Donner and Bull (1983) discussed the likelihood ratio test. Konishi and Gupta (1989)
proposed an approximate likelihood ratio test, and derived its asymptotic null and nonnull distributions
for testing the equality of more than two intraclass correlation coefficients based on independent sam-
ples from several multinormal distributions. Huang and Sinha (1993) proposed several approximately
optimum invariant tests for testing the equality of k (two or more) intraclass correlation coefficients
based on mutinormal samples. In some other way, Young and Bhandary (1998) proposed several
tests including the likelihood ratio test for the equality of two intraclass correlation coefficients under
unequal family sizes based on two independent mutinormal samples.

The present paper focuses on the development of noninformative priors for the common intraclass
correlation coeflicient p when independent samples are drawn from multivariate normal populations.
Although subjective Bayesian are often critical of such priors, these priors have clear pragmatic appeal
especially when prior information is vague in nature.

The matching idea goes back to Welch and Peers (1963). Interest in such priors revived with the
work of Stein (1985) and Tibshirani (1989). Among others, we may cite the work of Mukerjee and
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Dey (1993), DiCiccio and Stern (1994), Datta and Ghosh (1995a), Datta and Ghosh (1995b, 1996),
Mukerjee and Ghosh (1997) and Mukerjee and Reid (1999).

On the other hand, Ghosh and Mukerjee (1992), and Berger and Bernardo (1989, 1992) extended
Bernardo’s (1979) reference prior approach, giving a general algorithm to derive a reference prior by
splitting the parameters into several groups according to their order of inferential importance. This
approach is very successful in various practical problems. Quite often reference priors satisfy the
matching criterion.

The outline of the remaining sections is as follows. In Section 2, we derive Fisher information
matrix under the reparametrization. Then we develop the first order and second order probability
matching priors. It turns out that the second order matching prior dose not match alternative cov-
erage probabilities up to the second order and is not a HPD matching prior. Moreover, among all
of the reference priors, one-at-a-time reference prior satisfies a second order matching criterion. In
Section 3, we prove the propriety of the posterior distribution for a general class of prior distributions
which includes the reference priors as well as the matching priors. In Section 4, simulated frequentist
coverage probabilities under the proposed priors are investigated.

2. The Noninformative Priors

Let X E]) = (Xff), ey ng))’ be px1 vector of observations from the multivariate normal distribution with
mean vector g and covariance matrix £, where X" is the i observation vector in the /-population,
I=1,...,q,i=1,...,n. The structure of the mean vector and the covariance matrix is given as
1 ! 2
=1, and X0 =N -p),+pd,) 2.1)

where 1), is the p X 1 vector of 1’s, I, is the p X p identity matrix and J , is the p X p matrix containing
only ones. Here p is a common intraclass correlation coefficient.

We consider an orthogonal transformation of the Helmert type applied to the Xﬁl). LetY fl) =
(Yl.(ll), e Yi(;))’ =0X El), where Q is an orthogonal matrix. Under this orthogonal transformation, it is
obvious that

YO~ N, (p2), 1=1,....qi=1,...m, (2.2)
where
p"" = (,0....,00  and X0 =o7Diag{p7'[1 + (p - Dpl.(1 - p).....(1 - p)}.

We begin with finding the probability matching priors for the common intraclass correlation p.
For a prior 7, let 0{‘“(7r; Y) denote the (1 — @)™ percentile of the posterior distribution of 6y, that is,

P oy <0 mY)|Y]=1-0, (2.3)

where 6 = (0y,...,6,)7, t = 2g = 1 and 6; = p is the parameter of interest. We want to find priors 7
for which

Ploy <0 mY)|6]=1-a+o(n™) (2.4)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.4) are called matching priors. If u = 1/2,
then 7 is referred to as a first order matching prior, while if u = 1, & is referred to as a second order
matching prior.
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In order to find such matching priors 7, it is convenient to introduce orthogonal parametrization,
(Cox and Reid, 1987; Tibshirani, 1989). To this end, let

1
0=p, A=or[p'A+p-Dpd-py . G=m I=1...4 2.5)
With this parametrization, the likelihood function of parameters (6, A1, ..., A4,01,...,0,) for model
(2.2) is given by

L6, 4,6) e [ﬁ /Hnlzp] exp {— Zq: L - o -]

I=1 =1 24
” : (2.6)

where A = (4y,...,4,) and 6 = (61, ...,d,). Based on (2.6), the Fisher information matrix is given by

Iy 0 O
I=| 0 I, O |,

&

2 2
pE (0 -a) & & OF)
—— +

T+p-De L4

S

0 0 I
where
p(p-1) ) ) .
1, =22" " -1 1-
i s+ (= DO - 6) ;nz
. pny Py
I, =D — e,
» lag{zaf 2/15}

1-p
C[.-1 T] plo L ni ng
Iy =[p7'(1+ (p - 1Y) (1—6)pD1ag{/l—l,...,/l—q}.

Thus 6 is orthogonal to A and 6 in the sense of Cox and Reid (1987). Following Tibshirani (1989), the
class of first order probability matching priors is characterized by

aD©,2,8) < [1+(p - DA™ (1 —0)"'d(A,6), 2.7

where d(4, §) is an arbitrary function differentiable in its arguments.

Clearly the class of prior given in (2.7), is quite large, and it is important to narrow down this class
of priors. To this end, we consider the class of second order probability matching priors as given in
Mukerjee and Ghosh (1997).

Theorem 1. The second order probability matching prior is given by
m20,4,6) = [1+(p— DO (A -0 47" -+ A, h(6), (2.8)
where () is any smooth function of 6.

Proof: A second order probability matching prior is of the form (2.7), and also d must satisfy an
additional differential equation (c¢f (2.10)) of Mukerjee and Ghosh (1997), namely

1 d (-2 Lo (-t 59 (-1
cd@, 6%{11 fLu,l} > g{ll CLiId(A, 6)} > o {11 C Lt Id(A, 6)} =0. (2.9
=1 v v

v=1
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Here
[(81og L\’
LMJ:E( gg ) =c[1+(p—1)6]‘3(1—«9)‘3, ¢ = a constant
:6310gL n, ) 2
Ly, =E|————| = -D[l+(p-DoI(1-06)"", =1,...,
y »692(%} L+ (p-DO2A-0)72 v q
[03log L
L w=F =0, =1,...,
Gy _aam&v] a4
and
" o o
"= o 1 o |,
o o I®
where
Mo 2 14 (p- DR - 07
p(p— DXL, nl
247 20
1 = Diagq —,...,—7¢,
pmi’ Py

P=p _1(1+(p—1)9)]71"+p -6 Dlag{i ,ﬁ}
1

Then (2.9) simplifies to

9
Z = {Ad(A,6)) = (2.10)
i=1 (9

Hence the set of solution of (2.10) is of the form
d(A,8) = 47" - 4, (), (2.11)
where h(6) is any smooth function of 6. Thus the resulting second order matching prior is
220,4,8) = [1+(p- DO A -0 a7 - A h().
This completes the proof. (|

Remark 1. There are alternative ways through which matching can be accomplished. One such
approach (DiCiccio and Stern, 1994; Ghosh and Mukerjee, 1995) is matching through the HPD region.
Datta et al. (2000) provided a theorem which establishes the equivalence of second order matching
priors and HPD matching priors within the class of first order matching priors. The equivalence
condition is that 11_13 / 2L111 dose not depend on 6;. Since

q
=—p(p=D[3(p-DF-2p+4][L+(p- DO (1=6)7 ) m

Ly = E[
=1

d*logL
o0
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and

-1 el
=222 [ (- 0a -0 m
=1

thus

m\H

_3 _1
I Ly = -2 p(p—1>zzn, [3(p - )6 - 2p +4]

depends on 6. Therefore the second order probability matching prior for 6 does not HPD matching
prior. Mukerjee and Reid (1999) studied that a prior satisfying (2.4) matches P[0, + B(I'!/n)!/? <
9}’”(7r; Y)|0] with the corresponding posterior probability, up to the same order and for each 8 and
a, where the scalar § is free from n, § and Y. If a matching prior matches the alternative coverage
probabilities then there is a stronger justification for calling it noninformative in so far as agree-
ment with a frequentist is concerned. In general the second order matching prior may or may not
match the alternative coverage probabilities up to the same order of approximation. Under orthog-
onal parametrization, Mukerjee and Reid (1999) gives the simple differential equations that the sec-
ond order probability matching prior matches alternative coverage probabilities up to the second or-
der. The differential Equation (3.20) of Mukerjee and Reid (1999) is /860,{1, _3/ Li11} = 0. Since
d/96I ) Ly = =2%3(p — Dip(p - DIT'2[XL, m]™"/? # 0, thus the second order probability
matchmg prior for 6 does not match the alternative coverage probabilities up to the second order.

Remark 2. In the original parameterization, the second order matching prior becomes

(2) (p,a'l,...,a'(zl,ul,...,yq) =[1+(p- l)p]_1 1 —p)_10'1_2~--0';2h(/11,...,ﬂq>. (2.12)

Reference priors introduced by Bernardo (1979), and extended further by Berger and Bernardo
(1992) have become very popular over the years for the development of noninformative priors. We
derive the reference priors for different groups of ordering of (6, A, 6). Then due to the orthogonality
of the parameters, we can follow the algorithm by Datta and Ghosh (1996). Choosing rectangular
compacts for each 6, A and 6, when 6 is the parameter of interest, the reference priors are given by as
follows.

Theorem 2. [f 0 is the parameter of interest, then the reference prior distributions for different
groups of ordering of (0, A, 8) are:

Group ordering Reference prior
(©.6).4 mee 4 +(p =105 ”(me
((6.4.6)) 75 o aﬁ St p-a)” 6"

{0,4,6},10,6,4},{(6,),0} m3 A} ! --~/1 [1 +(p - 1)6’] 1-6)"

G+ (p-1o (-6

wm

{9, (/17 6)} T4 &< A /l

Remark 3. Note that one-at-a-time reference priors 73 satisfies the second order matching criterion
for 6. Here “one-at-a-time” means that we derive the reference priors by splitting the parameters into
groups one at a time. The reference priors 73 and 4 do not depend on p and q.
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In the Theorem 1, the second order probability matching prior is given by
A20.4,8) =[1+(p- 1o (1 =o' 47" -+ 2, (o),

where h(d) is any smooth function of 6. However every function is not permissible in the construction
of priors. For instance, we consider any function of the form (¢; - - -6q)k. If k is a positive integer, then
the posterior distribution under functions of the form (6, - - - 6q)k is proper. But under the odd numbers,
the marginal posterior distribution of (6, 2) is zero. For the even numbers, the condition of propriety
in this form strongly depend on the k. That is, as k — oo, the sample size n — oo to satisfy the
condition of propriety. Thus any function of the form 9’5 excluded from consideration. Also 6y, -+, d,
are the location parameters. Hence we consider a particular second order matching prior where 4 is a
constant in the above matching prior. This prior is given by

20,8 =" 1+ (-1 (1-0)7" (2.13)

ITI

3. Implementation of the Bayesian Procedure

We investigate the propriety of posteriors for a general class of priors which includes the reference
priors and the second order matching prior (2.13). We consider the class of priors

7(0,4,8) oc (A1 --- ) [1+(p— 1)6]_" (1-6-, (3.1)
where a > 0,b > 0 and —co < ¢ < co. The following general theorem can be proved.

Theorem 3. The posterior distribution of (6, A, 8) under the prior n, (3.1), is proper if yyp+2a—3 >
0,l=1,...,q, (p—D(Np+2ga—2q)—2bp > 0and p(N—qg—2c)+2q(a—1) > 0, where N = Z?Zl ny.

Proof: Note that the joint posterior for 6, A and § given y is

d Wi —a —
7(0, 4, 8ly) o []—[ PR | T ) e S I (3.2)
=1

. 2
pzii1(u)_5l n i(y )
_

1+(p—-18 = 1-6
where y = (y(l), .. ,yﬁlll), .. ,y(lq), .. ,yflq)) Firstly, we integrate with respect to 6y, ..., 0, from (3.2).
Then one gets

=1 <M

q 1
x exp{— > % [+ - Doya-er]

9q nyp+2a-1

r@. Ay |[]4 7 |H+@-na~ 5" a-0~5" (3.3)
=1
q w p (O
I S _ I L (1))
Xexp{ ; /ll[p (1+(p - DO -6 ] T +,-:1sz: il

where y; = Zl 1yfll)/n,, [=1,...,q. Next, integrating with respect to Ai,. .., Ay, it follows from (3.3)
that

(p=D(Np+2qa=2)-2bp P(N-g-2¢)+2g(a—1)

7(@ly) < [1+ (p — 1] 2 (1-6) 2

np+2a-3
ny 2

q p
xﬂ{p(l 9)2 (=5 + [+ o= 1o1 ) Y “)} S

=1 i=1 j=2
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where N = Zle n;.. Here mp +2a—3 >0, 1 =1,...,q. Finally, we integrate with respect to 6.

1 1 (- l)(Np+2qa 29)-2bp P(N=g=2¢)+2g(a=1)
n(Oly)do = [1+ (-1 1-6
_L _

P- IH
np+2a-3
P 2

Xl—[{p(l—ﬂ)z () y, +[1+(p -1 Z <’>} do.  (3.5)

i=1 j=2

Thus the last integral is finite if (p — 1)(Np + 2ga — 2q) —2bp > 0 and p(N — g —2c¢) +2q(a—1) > 0.
This completes the proof. O

Next, we provide the marginal density of § under the above noninformative prior.

Theorem 4. Under the prior r, (3.1), the marginal posterior density of p, is given by

- I)(Np+7qa @)-2bp P(N-2g-2¢)+q(2a-1)
m(6ly) o< [1+ (p = D] (1-6 g

_n p+2a-3

ny 2

q
<[ p =0 368 =5 +11+ - 1ol

=1 i=1 i=1 _]:2

”) (3.6)

M-u

where 5, = 3" nyll)/nl, l=1,...,qand N = 31 n.

The normalizing constant for the marginal density of 6 requires a one dimensional integration.
Therefore we have the marginal posterior density of 6, and so it is easy to compute the marginal
moment of 6. For m; reference prior, a = 1, b = (p(q +2) — q)/(2p) and ¢ = (¢ — (g — 2)p)/(2p), for
7, reference prior, a = 3/2, b = (p(qg+2) —¢q)/(2p) and ¢ = (¢ — (g — 2)p)/(2p), for 73 reference
prior,a = 1, b = 1 and ¢ = 1 and for m4 reference prior, @ = 3/2, b = 1 and ¢ = 1 in this marginal
density. Note that except for 3 and 74, the other cases depend on p and g. In Section 4, we investigate
the frequentist coverage probabilities for the 71, 7, 3 and my4.

4. Numerical Analysis
4.1. Simulation study

We evaluate the frequentist coverage probability by investigating the credible interval using the marginal
posterior density of € under the noninformative prior 7 given in (3.1) for several configurations. That
is to say, the frequentist coverage of a o' posterior quantile should be close to a. This is done nu-
merically. Table 1 and Table 2 give numerical values of the frequentist coverage probabilites of 0.05
(0.95) posterior quantiles for the our prior. The computation of these numerical values is based on
the following algorithm for any fixed true (o, o’%, ey 0'5, M1, .., M) and any prespecified probability
value @. Here a is 0.05 (0.95). Let 8%(m;Y) be the posterior a-quantile of 6 given Y. That is to
say, F(6%(m; Y)|Y) = @, where F(-|Y) is the marginal posterior distribution of 6. Then the frequentist
coverage probability of this one sided credible interval of 6 is

Ppas(a;0) = Ppas (0 <0 <6mY)). 4.1)

The estimated Py a4 (a; 6) when @ = 0.05(0.95) is shown in Table 1 and Table 2.
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Table 1: Frequentist coverage probability of 0.05 (0.95) posterior quantiles of p when g = 3

Dal Ho Kim

P His K2, 13 01,02,03 ny, ny, n3 Ty ™ 3 Ty
33,3 0.010(0.789) 0.012(0.772) 0.051(0.951) 0.051(0.937)
3.3.5 0.011(0.825) 0.012(0.812) 0.049(0.953) 0.049(0.941)
L1 5,55 0.015(0.859) 0.017(0.852) 0.049(0.951) 0.050(0.944)
5,57 0.016(0.870) 0.017(0.863) 0.047(0.951) 0.048(0.946)
0.0.0 10, 10, 10 0.024(0.897) 0.024(0.894) 0.051(0.949) 0.052(0.946)
-0, 33,3 0.009(0.786) 0.011(0.769) 0.050(0.946) 0.05000.931)
3.3.5 0.012(0.826) 0.014(0.814) 0.050(0.954) 0.051(0.944)
1,2,3 5,55 0.016(0.856) 0.017(0.848) 0.049(0.948) 0.050(0.943)
55,7 0.017(0.863) 0.018(0.856) 0.047(0.949) 0.049(0.944)
ol 10, 10, 10 0.023(0.894) 0.024(0.891) 0.050(0.947) 0.050(0.944)
: 33,3 0.009(0.800) 0.010(0.782) 0.053(0.952) 0.053(0.936)
3.3,5 0.013(0.827) 0.014(0.813) 0.050(0.952) 0.050(0.942)
L1 5,55 0.015(0.860) 0.016(0.852) 0.051(0.952) 0.052(0.944)
5.5.7 0.016(0.870) 0.017(0.864) 0.047(0.952) 0.048(0.945)
a3 10, 10, 10 0.024(0.895) 0.024(0.891) 0.050(0.948) 0.051(0.945)
02 33,3 0.007(0.79T) 0.009(0.773) 0.050(0.948) 0.050(0.933)
3.3,5 0.014(0.831) 0.015(0.816) 0.052(0.954) 0.053(0.945)
1,2,3 5,55 0.017(0.853) 0.018(0.844) 0.052(0.950) 0.053(0.943)
5.5.7 0.015(0.865) 0.016(0.858) 0.049(0.948) 0.049(0.941)
10, 10, 10 0.024(0.896) 0.025(0.893) 0.052(0.950) 0.053(0.947)
3.3,3 0.008(0.792) 0.009(0.774) 0.049(0.950) 0.049(0.935)
3.3.5 0.012(0.822) 0.014(0.810) 0.046(0.946) 0.046(0.936)
L1l 5.5.5 0.016(0.854) 0.017(0.845) 0.050(0.951) 0.051(0.943)
5,57 0.016(0.866) 0.018(0.859) 0.047(0.948) 0.047(0.941)
0.0.0 10, 10, 10 0.022(0.899) 0.023(0.896) 0.051(0.953) 0.052(0.949)
-0, 33,3 0.009(0.790) 0.01000.771) 0.049(0.950) 0.049(0.934)
3.3.5 0.010(0.824) 0.011(0.810) 0.050(0.949) 0.050(0.939)
1,2,3 5.5.5 0.015(0.851) 0.017(0.842) 0.047(0.948) 0.048(0.941)
5,57 0.017(0.864) 0.019(0.858) 0.052(0.949) 0.053(0.944)
05 10, 10, 10 0.024(0.896) 0.025(0.893) 0.050(0.950) 0.051(0.947)
: 33,3 0.010(0.796) 0.012(0.779) 0.053(0.95T) 0.053(0.936)
3.3.5 0.013(0.829) 0.015(0.815) 0.051(0.952) 0.051(0.941)
L1 5.5.5 0.017(0.858) 0.018(0.849) 0.052(0.949) 0.053(0.942)
5,57 0.019(0.866) 0.020(0.859) 0.048(0.949) 0.049(0.944)
a3 10, 10, 10 0.023(0.895) 0.024(0.892) 0.050(0.948) 0.051(0.946)
»2 33,3 0.010(0.794) 0.012(0.778) 0.051(0.953) 0.051(0.937)
3.3.5 0.012(0.826) 0.014(0.815) 0.049(0.950) 0.049(0.939)
1,2,3 5,55 0.019(0.856) 0.020(0.848) 0.053(0.948) 0.054(0.941)
5,57 0.017(0.864) 0.017(0.857) 0.050(0.948) 0.050(0.943)
10, 10, 10 0.024(0.897) 0.025(0.894) 0.051(0.951) 0.053(0.948)
3.3,3 0.009(0.795) 0.009(0.777) 0.049(0.950) 0.049(0.935)
3.3.5 0.014(0.821) 0.015(0.806) 0.050(0.947) 0.050(0.936)
L1 5.5.5 0.018(0.854) 0.019(0.846) 0.052(0.951) 0.053(0.944)
5,57 0.018(0.870) 0.019(0.862) 0.051(0.950) 0.052(0.944)
0.0.0 10, 10, 10 0.021(0.895) 0.022(0.892) 0.048(0.949) 0.049(0.944)
-0, 33,3 0.010(0.796) 0.012(0.779) 0.056(0.94%) 0.055(0.939)
3.3.5 0.012(0.821) 0.013(0.808) 0.053(0.951) 0.054(0.941)
1,2,3 5.5.5 0.015(0.855) 0.016(0.846) 0.052(0.948) 0.052(0.940)
5.5.7 0.017(0.861) 0.017(0.856) 0.048(0.947) 0.048(0.940)
00 10, 10, 10 0.021(0.900) 0.022(0.896) 0.046(0.952) 0.046(0.950)
- 33,3 0.009(0.796) 0.011(0.778) 0.049(0.955) 0.049(0.942)
3.3.5 0.013(0.826) 0.014(0.812) 0.047(0.950) 0.047(0.941)
L1 5.5.5 0.015(0.856) 0.017(0.847) 0.050(0.951) 0.051(0.945)
5,57 0.016(0.868) 0.017(0.861) 0.050(0.951) 0.050(0.945)
s 10, 10, 10 0.024(0.896) 0.025(0.893) 0.053(0.948) 0.053(0.946)
2 33,3 0.010(0.799) 0.012(0.779) 0.050(0.950) 0.050(0.935)
3.3.5 0.012(0.822) 0.014(0.810) 0.050(0.952) 0.050(0.939)
1,2,3 555 0.017(0.858) 0.018(0.850) 0.050(0.952) 0.051(0.944)
5,57 0.018(0.861) 0.019(0.853) 0.054(0.946) 0.055(0.939)
10, 10, 10 0.022(0.892) 0.023(0.889) 0.050(0.946) 0.052(0.943)
In particular, for fixed (o, o3, ... ., o-é,,ul, < osHg), pyqand (ny,. .., n,), we take 10,000 independent

random samples of Y from the model (2.2). Note that under the prior 7, for fixed Y, § < 6*(rr; Y) if
and only if F(0]Y) < a. Under the prior 7, Pya4)(@;p) can be estimated by the relative frequency of
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Table 2: Frequentist coverage probability of 0.05 (0.95) posterior quantiles of p when g = 5

P Ml M5 01,...,05 ny,...,ns T ™ T3 Ty

3,3,3,3,3 0.006(0.730) 0.007(0.708) 0.050(0.948) 0.049(0.932)

3,3,3,5,5 0.008(0.779) 0.009(0.765) 0.049(0.948) 0.048(0.938)

L1, 1, 1,1 5,5,5,5,5 0.010(0.825) 0.011(0.818) 0.048(0.952) 0.048(0.945)

5,5,5,7,7 0.013(0.837) 0.014(0.829) 0.052(0.950) 0.052(0.943)

0.0.0.0.0 10, 10, 10, 10, 10 0.018(0.879) 0.019(0.875) 0.048(0.949) 0.048(0.945)

T 3,3,3,33 0.005(0.728) 0.006(0.709) 0.050(0.950) 0.049(0.936)

3,3,3,4,5 0.008(0.777) 0.010(0.760) 0.051(0.948) 0.049(0.937)

1,2,3,4,5 55,5,5,5 0.010(0.817) 0.011(0.809) 0.048(0.952) 0.048(0.944)

5,5,5,7,7 0.011(0.833) 0.012(0.826) 0.050(0.951) 0.051(0.943)

0.1 10, 10, 10, 10, 10 0.019(0.869) 0.019(0.866) 0.050(0.947) 0.051(0.944)

: 3,3,3,3,3 0.005(0.734) 0.006(0.714) 0.054(0.954) 0.053(0.937)

3,3,3,5,5 0.008(0.777) 0.008(0.763) 0.050(0.949) 0.049(0.937)

L1, 1, 1,1 5,5,5,5,5 0.011(0.820) 0.012(0.810) 0.053(0.951) 0.053(0.943)

5,5,5,7,7 0.011(0.832) 0.012(0.825) 0.046(0.950) 0.047(0.944)

1.2.3.4.5 10, 10, 10, 10, 10 0.017(0.872) 0.017(0.870) 0.047(0.950) 0.048(0.946)

142 % 3,3,3,3,3 0.006(0.732) 0.007(0.714) 0.043(0.950) 0.047(0.934)

3,3,3,5,5 0.007(0.779) 0.008(0.766) 0.049(0.950) 0.047(0.940)

1,2,3,4,5 5,5,5,5,5 0.010(0.817) 0.011(0.806) 0.050(0.950) 0.051(0.944)

5,5,5,7,7 0.011(0.837) 0.012(0.828) 0.053(0.948) 0.053(0.941)

10, 10, 10, 10, 10 0.016(0.876) 0.016(0.872) 0.048(0.947) 0.049(0.944)

3,3,3,3,3 0.006(0.728) 0.007(0.710) 0.049(0.951) 0.048(0.935)

3,3,3,5,5 0.008(0.774) 0.009(0.758) 0.051(0.947) 0.051(0.937)

L1111 5,5,5,5,5 0.009(0.814) 0.010(0.802) 0.048(0.945) 0.048(0.938)

5,5,5,7,7 0.012(0.833) 0.012(0.824) 0.050(0.948) 0.051(0.941)

0.0.0.0.0 10, 10, 10, 10, 10 0.019(0.876) 0.020(0.872) 0.050(0.947) 0.050(0.943)

T 3,3,3,33 0.005(0.723) 0.005(0.703) 0.047(0.949) 0.045(0.931)

3,3,3,5,5 0.006(0.774) 0.007(0.761) 0.050(0.953) 0.050(0.942)

1,2,3,4,5 5,5,5,5,5 0.011(0.807) 0.012(0.798) 0.052(0.945) 0.052(0.937)

5,5,5,7,7 0.011(0.836) 0.012(0.828) 0.051(0.949) 0.051(0.944)

05 10, 10, 10, 10, 10 0.016(0.876) 0.017(0.873) 0.049(0.949) 0.050(0.947)

’ 3,3,3,33 0.005(0.736) 0.006(0.715) 0.048(0.949) 0.046(0.934)

3,3,3,5,5 0.008(0.778) 0.008(0.762) 0.049(0.952) 0.048(0.942)

L1111 5,5,5,5,5 0.011(0.819) 0.012(0.810) 0.049(0.950) 0.050(0.944)

5,5,5,7,7 0.013(0.834) 0.014(0.828) 0.052(0.950) 0.053(0.944)

1.2.3.4.5 10, 10, 10, 10, 10 0.018(0.877) 0.019(0.875) 0.048(0.948) 0.049(0.944)

T 3,3,3,33 0.006(0.726) 0.006(0.706) 0.050(0.947) 0.048(0.932)

3,3,3,5,5 0.007(0.774) 0.008(0.760) 0.048(0.949) 0.048(0.937)

1,2,3,4,5 5,5,5,5,5 0.011(0.821) 0.012(0.813) 0.053(0.949) 0.053(0.943)

5,5,5,7,7 0.014(0.843) 0.014(0.835) 0.056(0.953) 0.056(0.947)

10, 10, 10, 10, 10 0.018(0.873) 0.019(0.869) 0.052(0.948) 0.052(0.945)

3,3,3,3,3 0.005(0.731) 0.007(0.711) 0.049(0.950) 0.047(0.933)

3,3,3,5,5 0.007(0.783) 0.008(0.766) 0.048(0.949) 0.047(0.938)

L1111 5,5,5,5,5 0.011(0.819) 0.012(0.811) 0.053(0.949) 0.053(0.943)

5,5,5,7,7 0.013(0.839) 0.014(0.831) 0.053(0.950) 0.054(0.945)

0.0.0.0.0 10, 10, 10, 10, 10 0.017(0.875) 0.017(0.872) 0.049(0.948) 0.050(0.946)

T 3,3,3,3,3 0.006(0.724) 0.007(0.706) 0.051(0.947) 0.050(0.931)

3,3,3,4,5 0.007(0.776) 0.008(0.762) 0.047(0.952) 0.045(0.941)

1,2,3,4,5 5,5,5,5,5 0.010(0.813) 0.011(0.803) 0.051(0.949) 0.052(0.940)

5,5,5,7,7 0.011(0.842) 0.011(0.835) 0.051(0.953) 0.052(0.946)

0.9 10, 10, 10, 10, 10 0.015(0.881) 0.016(0.877) 0.049(0.953) 0.050(0.951)

’ 3,3,3,33 0.005(0.733) 0.005(0.714) 0.050(0.951) 0.048(0.935)

3,3,3,5,5 0.010(0.785) 0.010(0.769) 0.054(0.953) 0.053(0.943)

L1111 5,5,5,5,5 0.011(0.817) 0.012(0.806) 0.052(0.948) 0.052(0.941)

5,5,5,7,7 0.013(0.834) 0.014(0.826) 0.052(0.949) 0.052(0.944)

1.2.3.4.5 10, 10, 10, 10, 10 0.017(0.878) 0.018(0.874) 0.053(0.952) 0.053(0.949)

T 3,3,3,3,3 0.006(0.725) 0.007(0.706) 0.049(0.948) 0.047(0.935)

3,3,3,5,5 0.008(0.773) 0.009(0.759) 0.049(0.950) 0.048(0.941)

1,2,3,4,5 5,5,5,5,5 0.011(0.819) 0.012(0.810) 0.050(0.948) 0.050(0.940)

5,5,5,7,7 0.014(0.835) 0.015(0.827) 0.051(0.949) 0.052(0.941)

10, 10, 10, 10, 10 0.018(0.874) 0.018(0.870) 0.048(0.948) 0.049(0.945)

F(0)Y) < «. For the cases presented in Table 1 and Table 2 we see that the noninformative prior 73
and 74 meet very well the target coverage probabilities. Also note that the results of tables are not
much sensitive to the change of the values of p, 0'%, e o-% and y,, ..., s, and one-at-a-time reference
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Table 3: Number of finger ridges on both hands of individuals in 12 pairs of female identical twins

Population Finger Ridges Population Finger Ridges
1 71 71 2 76 70
1 79 82 2 83 82
1 105 99 2 114 113
1 115 114 2 57 44
1 114 113 2 94 91
1 75 83 2 76 72

prior 3 matches the target very well. Thus we recommend to use the one-at-a-time reference prior
when using the matching criterion.

4.2. Example

We provide several estimators for the common intraclass correlation coefficients p using real data
from Snedecor and Cochran (1980), which are randomly split into two populations as shown in Table
3. The data are numbers of finger ridges on both hands of individuals in 12 pairs of female identical
twins.

Three estimators for the common intraclass correlation coefficients are the maximum likelihood
estimator py (Donner and Bull, 1983), the approximate estimator pxg (Konishi and Gupta, 1989)
and the Bayes estimator using one-at-a-time reference priors pg. They are given by py = 0.9608,
prkc = 0.9595 and pp = 0.9611, respectively. Three estimates are very similar. Because we split
the data into two populations from one population, we calculate the maximum likelihood estimate for
the intraclass correlation coefficient in one population which is given by p = 0.9626. The Bayes
estimate is closer to p™.
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