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Abstract

In this paper, we develop the reference and the matching priors for the reliability
function of two-parameter exponential distribution. We derive the reference priors and
the matching prior, and prove the propriety of joint posterior distribution under the
general prior including the reference priors and the matching prior. Through the sim-
ulation study, we show that the proposed reference priors match the target coverage
probabilities in a frequentist sense.
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1. Introduction

Consider X has an exponential distribution with scale parameter A and the location pa-
rameter pu. Then the exponential distribution of X is given by

f(x,u,)\):A_lexp{—x/\’u}7:r>ﬂ>0,)\>0. (1.1)

Then the reliability function R(¢) is given by

R(t):P(X>t)=eXp{—/\“},t>u. (1.2)

The present paper focuses on the noninformative priors for the reliability function R(¢).

In recent years, the notion of a noninformative prior has attracted much attention. Among
several types of noninformative priors, reference prior proposed by Berger and Bernardo
(1992) and probability matching prior initiated by Stein (1985) and Tibshirani (1989) are
very useful in objective Bayesian inference. Most of the work has been centered around a
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smooth parametric families (regular families). Kim et al. (2009) developed reference priors
and probability matching priors for regular family of Pareto distribution.

However, nonregular families, such as the uniform or shifted exponential, are also im-
portant in many practical problems. Ghosal and Samanta (1995) studied such families ex-
tensively. Ghosal and Smanta (1997) developed the reference priors for the case of one
parameter families of discontinuous densities in the sense of Bernardo (1979), and Ghosal
(1997) derived the reference priors for the multiparameter nonregular cases that the family
of densities have discontinuities at some points which depend on one component of the pa-
rameter, while the family is regular with respect to the other parameters. Also Ghosal (1999)
developed the probability matching prior for one parameter and two parameter cases under
nonregular families. Quite often reference prior is the probability matching prior. Recently,
Kang et al. (2010) developed the reference priors for the common location parameter in the
half-normal distributions, and showed that the proposed reference prior matches the target
coverage probabilities.

The problem of making inference about R(t) of nonregular family of distribution has
received much attention in literature. Guenther et al. (1976) gave a procedure which pro-
duces exact confidence limits for R(t). Engelhardt and Bain (1978) proposed an approximate
method for computing confidence limit with censored data. Also see Engelhardt (1995) and
Lawless (1982). In particular, we refer to Engelhardt (1995) for a review and related refer-
ences. Roy and Mathew (2005) proposed a confidence limit using the concept of a generalized
confidence interval based on type II censored data. In numerical results of Roy and Mathew
(2005), they showed that the proposed generalized confidence limit is an extremely satisfac-
tory confidence limit in the sense of the coverage of confidence interval. On the other hand
for the confidence interval of Engelhardt and Bain (1978), the coverage can be unsatisfactory
and the interval can be conservative when ¢ is large compared to p. Varde (1969) and Sinha
and Guttman (1976) gave the Bayes estimator for reliability function based on conjugate
prior and noninformative prior for each parameters, respectively.

In this paper, we develop the reference priors and the matching prior for the reliability
function when X has two-parameter exponential distribution. The outline of the remaining
sections is as follows. In Section 2, we develop reference priors and matching prior for the
reliability function. In Section 3, we provide that the propriety of the posterior distribution
for the general prior including the reference priors and the matching prior. In Section 4,
simulated frequentist coverage probabilities under the derived priors are given.

2. The noninformative priors

Reference priors introduced by Bernardo (1979), and extended further by Berger and
Bernardo (1992) have become very popular over the years for the development of nonin-
formative priors. Ghosal (1997) derived the reference prior in sense of Bernardo (1979)
for multiparameter nonregular cases. We derive the reference priors for different groups of
orderings of (u,0) by following Ghosal (1997).

Let X be a random sample from an exponential distributions with scale parameter A and
the location parameter p. Then the reliability function is R(t) = exp{—(t — u)/A}. The
parameter § = (t — p)/X is of interest. Note that the problem for reliability function is
equivalent to 8 in developing noninformative priors.
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Let 0 = @ and p = p. Then with this reparameterization, likelihood function from the

(1.1) is given by
4 (@ — p)

Flalnb) = ;

where 6 > 0 and x > pu.

We firstly derived the reference prior when 6 is parameter of interest.

The reference prior is developed by considering a sequence of compact subsets of the
parameter space, and taking the limit of a sequence of priors as these compact subsets fill
out of the parameter space. The compact subset was taken to be Cartesian products of sets
of the form pu € [aq, b1].

From the likelihood function (2.1), the quantity F'(u,6) is given by

F(u,0) =02, (2.2)

where F'(u,0) = {4J11(u, 0)},
Jia(p, 0) = /ge(w;uﬁ)go(w;uﬁ)dx,
go = 0g/00 and g = f2. And also c(u, 0) is given by

0
c(p,0) = Eyol0log f/Ou] = -

Thus the conditional reference prior for u given 6 is

m(ul6) = e 6) = . (2.3)

The normalizing constant K;(0) of the reference prior m(u|@) is given by

by -1 by -1
Ki(0) = (/ ﬂ(u|9)du> = (/ teudu> =0 Hlog(t —a1)/(t —b1)] 7" (2.4)

and so we obtain

pu(pl0) = Ki(0)m(pl6) = log(t — a1)/(t —by)] ' (t — p)~". (2.5)

Thus the marginal reference prior for 6 is given by

b1
m(0) = exp {/ pi1(p]0) log 9_1du} =0t (2.6)

1

Therefore the reference prior for (i, 6), when 0 is parameter of interest, is given by

conm@ | st
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where 6y is a fixed point. Also when both p and 6 are parameters of interest, the reference
prior for (u,#) is given by

w2, 0) = (s, 0)[det F(p, 0)]2
o (t =) (2.8)

When 6 is parameter of interest, the reference prior for (u,6) based on an appropriate
penalty term of Ghosh and Mukerjee (1992) (and also see Ghosal, 1997) given by

3, 0) = [det F(,0)]2 = 67" (2.9)

Next we consider the matching prior for §. Ghosal (1999) developed the probability match-
ing prior for one parameter and two parameter cases under nonregular families. We derive
the probability matching prior when 6 is parameter of interest by following Ghosal (1999).
A probability matching prior is a solution that satisfies a differential equation of Ghosal
(1999), that is

1 0 0 1

N, 0) 06 18T UL O3 5550

}=0, (2.10)

where

92
Ap, 0) = \/—2E [(%,2 log f(X;p,0)].
Then since A(p,0) = 671, (2.10) simplifies to

0 0
0%{log7r(u, N} + %{9} =0. (2.11)
Hence the set of solution of (2.11) is of the form
7(11,0) = 0" d(), (212)

where d(u) > 0 is an arbitrary function of .

Remark 2.1 Note that the reference priors (2.7) and (2.9) satisfy a matching criterion.

3. Implementation of the Bayesian procedure

We investigate the propriety of posteriors for a general class of priors which include the
reference priors (2.7), (2.8) and (2.9). We consider the class of priors

7o (1, 6) 0 07t — )" (3.1)

where @ > 0 and b > 0. The following general theorem can be proved.

Theorem 3.1 The posterior distribution of (u, ) under the general prior (3.1) is proper if
n—a+1>0.
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Proof: Under the general prior (3.1), the joint posterior for u, 0 given x is

7, 0]%) o (t — p) """ exp {_t—eu Z(fﬂz - M)} ) (3.2)
i=1

Then integrating with respect to 6 in (3.2) if n — a + 1 > 0, we have the posterior

m(plx) oc (¢ — p) 7P (@ — p) = (et
_ —(n—a+1)
T—1
t—p) b1 3.3
xt= 0t |1+ T 7 (33
where z = Y1 | x;/n. Then
(1) T() I
| wubdn < [ = < . (3.4)
This completes the proof. O

Theorem 3.2 Under the general prior (3.1), the marginal posterior density of 6, is given
by

7_(_(0|X) N Aw(l) (t B ,u)_n—ban_a exp {_t_elu Z((pl — /,L)} d/i (35)
i=1

Note that normalizing constant for the marginal density of 6 requires an one dimensional
integration. Therefore we can have the marginal posterior density of # and so we compute
the marginal moment of #. In Section 4, we investigate the frequentist coverage probabilities
for the reference priors 71, mo and 73, respectively.

4. Numerical study

We investigate the frequentist coverage probability by investigating the credible interval of
the marginal posteriors density of # under the noninformative prior 7 given in Section 3 for
several configurations (i, A) and n. That is to say, the frequentist coverage of a 100(1—a)%th
posterior quantile should be close to 1 — a. This is done numerically.
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Table 4.1 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for 0

o A t

n

3

0.1 0.1 1.0

3.0

10
20
30
10
20
30
10
20
30
10
20
30

T
0.050 (0.951)
0.051 (0.950)
0.051 (0.948)
0.054 (0.947)
0.052 (0.951)
0.049 (0.952)
0.047 (0.950)
0.046 (0.949)
0.051 (0.953)
0.049 (0.953)
0.051 (0.952)
0.052 (0.950)

L)
0.101 (0.976)
0.082 (0.971)
0.077 (0.965)
0.105 (0.972)
0.083 (0.970)
0.072 (0.967)
0.097 (0.975)
0.077 (0.969)
0.076 (0.967)
0.100 (0.976)
0.081 (0.970)
0.075 (0.966)

0.050 (0.951)
0.050 (0.950)
0.051 (0.948)
0.054 (0.947)
0.052 (0.951)
0.049 (0.952)
0.047 (0.950)
0.046 (0.949)
0.051 (0.953)
0.049 (0.953)
0.051 (0.952)
0.052 (0.950)

10
20
30
10
20
30
10
20
30
10
20
30

0.058 (0.958)
0.052 (0.951)
0.044 (0.951)
0.059 (0.961)
0.052 (0.956)
0.048 (0.955)
0.060 (0.960)
0.057 (0.956)
0.050 (0.953)
0.060 (0.962)
0.057 (0.956)
0.051 (0.947)

0.110 (0.979)
0.083 (0.968)
0.071 (0.965)
0.112 (0.978)
0.086 (0.974)
0.070 (0.968)
0.120 (0.980)
0.090 (0.973)
0.073 (0.966)
0.114 (0.982)
0.087 (0.972)
0.075 (0.964)

0.058 (0.958)
0.052 (0.951)
0.044 (0.951)
0.059 (0.961)
0.052 (0.956)
0.047 (0.955)
0.060 (0.960)
0.057 (0.956)
0.050 (0.953)
0.060 (0.962)
0.057 (0.956)
0.051 (0.947)

10.0 15.0

20.0

30.0

10
20
30
10
20
30
10
20
30
10
20
30

0.063 (0.950)
0.058 (0.950)
0.053 (0.949)
0.070 (0.956)
0.058 (0.952)
0.055 (0.959)
0.071 (0.956)
0.058 (0.962)
0.057 (0.957)
0.073 (0.960)
0.065 (0.960)
0.062 (0.957)

0.117 (0.971)
0.088 (0.968)
0.077 (0.963)
0.126 (0.976)
0.090 (0.970)
0.082 (0.970)
0.127 (0.977)
0.091 (0.976)
0.083 (0.970)
0.127 (0.980)
0.099 (0.977)
0.086 (0.971)

0.062 (0.950)
0.058 (0.950)
0.053 (0.949)
0.070 (0.956)
0.058 (0.952)
0.055 (0.959)
0.071 (0.956)
0.058 (0.962)
0.057 (0.957)
0.073 (0.960)
0.065 (0.960)
0.062 (0.957)

Table 4.2 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for

n X t

n

1.0 0.1 3.0

10
20
30
10
20
30
10
20
30
10
20
30

T
0.047 (0.955)
0.050 (0.952)
0.052 (0.948)
0.050 (0.953)
0.050 (0.953)
0.048 (0.948)
0.051 (0.948)
0.051 (0.954)
0.051 (0.950)
0.049 (0.950)
0.053 (0.944)
0.046 (0.948)

T2
0.101 (0.977)
0.079 (0.971)
0.077 (0.964)
0.096 (0.973)
0.083 (0.969)
0.070 (0.964)
0.102 (0.974)
0.081 (0.970)
0.074 (0.966)
0.099 (0.974)
0.084 (0.965)
0.070 (0.964)

3
0.047 (0.955)
0.050 (0.952)
0.052 (0.948)
0.049 (0.953)
0.050 (0.953)
0.048 (0.948)
0.051 (0.948)
0.051 (0.954)
0.051 (0.950)
0.049 (0.950)
0.053 (0.944)
0.046 (0.948)

10.0

20.0

30.0

10
20
30
10
20
30
10
20
30
10
20
30

0.049 (0.953)
0.052 (0.952)
0.050 (0.952)
0.049 (0.951)
0.050 (0.949)
0.051 (0.951)
0.048 (0.952)
0.049 (0.952)
0.052 (0.954)
0.050 (0.952)
0.049 (0.948)
0.050 (0.949)

0.099 (0.976)
0.082 (0.969)
0.074 (0.964)
0.097 (0.976)
0.082 (0.968)
0.073 (0.966)
0.100 (0.975)
0.078 (0.972)
0.075 (0.969)
0.099 (0.975)
0.079 (0.967)
0.075 (0.966)

0.049 (0.953)
0.052 (0.952)
0.050 (0.952)
0.049 (0.951)
0.050 (0.949)
0.051 (0.951)
0.048 (0.952)
0.048 (0.952)
0.052 (0.954)
0.050 (0.952)
0.049 (0.948)
0.050 (0.949)

10.0 15.0

20.0

30.0

10
20
30
10
20
30
10
20
30
10
20
30

0.058 (0.945)
0.053 (0.951)
0.050 (0.951)
0.057 (0.952)
0.051 (0.956)
0.052 (0.951)
0.057 (0.955)
0.052 (0.953)
0.051 (0.956)
0.060 (0.962)
0.053 (0.955)
0.052 (0.950)

0.108 (0.970)
0.080 (0.970)
0.075 (0.967)
0.108 (0.973)
0.084 (0.970)
0.078 (0.967)
0.111 (0.977)
0.084 (0.970)
0.076 (0.970)
0.111 (0.980)
0.082 (0.971)
0.077 (0.966)

0.058 (0.946)
0.053 (0.951)
0.050 (0.951)
0.057 (0.952)
0.051 (0.955)
0.052 (0.951)
0.057 (0.955)
0.052 (0.953)
0.051 (0.956)
0.060 (0.962)
0.053 (0.955)
0.052 (0.950)

Tables 4.1, 4.2 and 4.3 give numerical values of the frequentist coverage probabilities of
0.05 (0.95) posterior quantiles for the proposed priors. The computation of these numerical
values is based on the following algorithm for any fixed true (u, ) and any prespecified value
a. Here o is 0.05 (0.95). Let 6™ («r|x,y) be the posterior a-quantile of 6 given x. That is to
say, F(0™(«|x)|x) = a, where F(:|x) is the marginal posterior distribution of §. Then the
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frequentist coverage probability of this one sided credible interval of 6 is
P(M7/\)(()¢;0) = P(W\)(O <0< QW(Q‘X)). (41)

The estimated P, x)(a;60) when o = 0.05(0.95) is shown in Tables 4.1, 4.2 and 4.3. In
particular, for fixed (u, ), we take 10,000 independent random samples of X from the
model (2.1).

For the cases presented in Tables 4.1, 4.2 and 4.3, we see that the reference priors m; and
w3 match the target coverage probability much more accurately than the reference prior ms
for values of (i, \) and values of t. In particular, the reference priors 7m; and 73 meet very
well the target coverage probabilities in small samples and give almost same results. Note
that the results of tables are not much sensitive to change of the values of (i, #) and ¢. Thus
we recommend to use the reference priors m; and 73 in the sense of asymptotic frequentist
coverage property.

Table 4.3 Frequentist coverage probabilities of 0.05 (0.95) posterior quantiles for 0

“ A t n T T T3

10.0 0.1 15.0 10 0.048 (0.955) 0.096 (0.978) 0.048 (0.955)
20 0.053 (0.948) 0.084 (0.966) 0.053 (0.948)
30 0.048 (0.949) 0.072 (0.966) 0.048 (0.949)
20.0 10 0.055 (0.948) 0.105 (0.974) 0.055 (0.948)
20 0.049 (0.951) 0.078 (0.969) 0.049 (0.951)
30 0.050 (0.950) 0.075 (0.965) 0.050 (0.950)
30.0 10 0.050 (0.950) 0.100 (0.973) 0.050 (0.950)
20 0.049 (0.950) 0.085 (0.969) 0.049 (0.950)
30 0.052 (0.955) 0.074 (0.969) 0.052 (0.955)
50.0 10 0.049 (0.954) 0.098 (0.976) 0.049 (0.954)
20 0.051 (0.949) 0.084 (0.969) 0.051 (0.949)
30 0.054 (0.949) 0.078 (0.967) 0.054 (0.949)
1.0 20.0 10 0.046 (0.949) 0.095 (0.973) 0.046 (0.948)
20 0.050 (0.949) 0.085 (0.969) 0.050 (0.949)
30 0.048 (0.951) 0.073 (0.968) 0.048 (0.951)
30.0 10 0.051 (0.952) 0.103 (0.975) 0.051 (0.952)
20 0.051 (0.952) 0.081 (0.969) 0.051 (0.952)
30 0.051 (0.950) 0.073 (0.967) 0.051 (0.950)
50.0 10 0.049 (0.949) 0.096 (0.972) 0.049 (0.949)
20 0.050 (0.948) 0.081 (0.968) 0.050 (0.948)
30 0.053 (0.950) 0.076 (0.964) 0.053 (0.950)
70.0 10 0.046 (0.948) 0.097 (0.972) 0.046 (0.948)
20 0.048 (0.949) 0.078 (0.966) 0.048 (0.949)
30 0.048 (0.948) 0.071 (0.963) 0.048 (0.948)
10.0 30.0 10 0.052 (0.952) 0.103 (0.974) 0.051 (0.952)
20 0.051 (0.952) 0.077 (0.970) 0.051 (0.952)
30 0.049 (0.950) 0.072 (0.966) 0.049 (0.950)
50.0 10 0.047 (0.951) 0.095 (0.974) 0.046 (0.950)
20 0.051 (0.950) 0.081 (0.969) 0.051 (0.950)
30 0.050 (0.948) 0.073 (0.965) 0.050 (0.948)
70.0 10 0.053 (0.949) 0.106 (0.975) 0.052 (0.948)
20 0.047 (0.951) 0.076 (0.969) 0.047 (0.951)
30 0.045 (0.950) 0.067 (0.966) 0.045 (0.950)
100.0 10 0.048 (0.950) 0.095 (0.974) 0.048 (0.950)

20 0.051 (0.950) 0.080 (0.969) 0.050 (0.949)
30 0.050 (0.955) 0.074 (0.968) 0.050 (0.955)

Ezample. This example taken from Sinha and Guttman (1976) and the data set is given
in Grubbs (1971). The summary of data set is z(;) = 162 and z = 997.2105. For this data
set, we compute the 90% and the 95% lower confidence limit of the reliability function R(t).

Sinha and Guttman (1976) gave the 100(1 — «)% lower confidence limits for R(t) using
the prior m(p,A) < A7% a > 0. For a = 1 and a = 2, the 90%(95%) lower confidence
limits are given in Table 4.4. Also the 90%(95%) Bayesian credible intervals based on the
reference priors are given. Note that the prior with @ = 1 of Sinha and Guttman (1976) is
our reference prior 73 and the prior with a = 2 of Sinha and Guttman (1976) is our reference
prior o

From the results of Table 4.4, the reference priors m; and 73 give a shorter 90% and 95%
confidence intervals than the reference prior 73, and the reference prior 7wy has the shortest
confidence interval. Note that the reference prior w5 had not good coverage probabilities in
our simulation results.
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Table 4.4 Lower 90% (95%) confidence limits of R(t)

t S&G(a =1) S&G(a = 2) T o T3
180 | 0.8819 (0.8603)  0.8789 (0.8565) 0.0144 (0.8932)  0.8789 (0.8565)  0.8810 (0.8603)
240 0.8192 (0.7974) 0.8134 (0.7911) 0.8329 (0.8119) 0.8134 (0.7911) 0.8192 (0.7974)
300 0.7526 (0.7341) 0.7479 (0.7256) 0.7635 (0.7423) 0.7479 (0.7256) 0.7526 (0.7341)
360 0.6951 (0.6723) 0.6848 (0.6617) 0.6995 (0.6772) 0.6846 (0.6617) 0.6951 (0.6723)
420 | 0.6376 (0.6136)  0.6254 (0.6014)  0.6405 (0.6167)  0.6254 (0.6014)  0.6376 (0.6136)
480 | 0.5843 (0.5591)  0.5707 (0.5456)  0.5862 (0.5611)  0.5707 (0.5456)  0.5843 (0.5591)
540 0.5351 (0.5089) 0.5204 (0.4944) 0.5364 (0.5102) 0.5204 (0.4944) 0.5351 (0.5089)
600 0.4898 (0.4628) 0.4744 (0.4477) 0.4907 (0.4638) 0.4744 (0.4477) 0.4898 (0.4628)

5. Concluding remarks

We have found noninformative priors for the reliability function of two parameter ex-
ponential distribution. We derived the reference priors and the matching prior when 6 is
parameter of interest is parameter of interest. We showed that the reference priors m; and 73
are a matching prior and meet well the target coverage probabilities. Thus we recommend
the use of the reference priors m; and w3 for Bayesian inference of the reliability function in
this distribution.
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