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Noninformative Priors for the Ratio of the Lognormal
Means with Equal Variances

Seung A Lee! and Dal Ho Kim?

Abstract

We develop noninformative priors for the ratio of the lognormal means
in equal variances case. The Jeffreys’ prior and reference priors are derived.
We find a first order matching prior and a second order matching prior. It
turns out that Jeffreys’ prior and all of the reference priors are first order
matching priors and in particular, one-at-a-time reference prior is a second
order matching prior. One-at-a-time reference prior meets very well the
target coverage probabilities. We consider the bioequivalence problem. We
calculate the posterior probabilities of the hypotheses and Bayes factors
under Jeffreys’ prior, reference prior and matching prior using a real-life
example.

Keywords: Bioequivalence problem; equal variance; Jeffreys’ prior; matching priors; ratio
of the lognormal means; reference priors.

1. Introduction

Faced with a skewed distribution, one can transform the original data in a way that
normalizes the distribution. The log-transformation is the most commonly used one.
One estimation problem is to construct confidence intervals and to test for the lognormal
mean. A common practice for such comparisons is to perform testing procedures on log-
transformed outcome variables and to report the resulting p-values for the null hypothesis
based on the original outcomes. For the Bayesian approach, see Moon et al. (2000) and
Moon and Kim (2001). These proposed the methods which are based on the Bayes factor.
Another estimation problem is for obtaining confidence intervals and tests for the ratio
of means of two independent lognormal distributions. For example, in a bioequivalence
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trials, the relative potency of a new drug to that of a standard one is expressed in terms
of the ratio of means, and analysts often need to construct a confidence interval for this
ratio or to test the null hypothesis that the ratio is one (Berger and Hsu, 1996; Chow
and Liu, 2000).

For our interest parameter, the ratio of lognormal means, we consider here nonin-
formative priors. We consider Bayesian priors such that the resulting credible intervals
for the ratio of the lognormal means have coverage probabilities equivalent to their fre-
quentist counterparts. Although this matching can be justified only asymptotically, our
simulation results indicate that this is indeed achieved for small or moderate sample sizes
as well. The matching idea goes back to Welch and Peers (1963). Interest in such priors
revived with the work of Stein (1985) and Tibshirani (1989). Among others, we may
cite the work of Mukerjee and Dey (1993), Datta and Ghosh (1995a, 1995b), Datta and
Ghosh (1995¢, 1996), and Mukerjee and Ghosh (1997). On the other hand, Ghosh and
Mukerjee (1992), and Berger and Bernardo (1989, 1992) extended Bernardo’s (1979) ref-
erence prior approach, giving a general algorithm to derive a reference prior by splitting
the parameters into several groups according to their order of inferential importance.
This approach is very successful in various practical problems. Quite often reference
priors satisfy the matching criterion described earlier.

In this paper, we develop noninformative priors when the variances of the log-
transformed outcome variables are equal. In Section 2, we derive Fisher information
matrix under orthogonal reparametrization. Then we develop the various noninforma-
tive priors. Specifically we derive the Jeffreys’ prior and the reference priors for differ-
ent groups of ordering for the parameters, and we develop first order and second order
probability matching priors for our interesting parameter. Sufficient conditions for the
propriety of posterior for a general class of priors are also given in this section. In Section
3, we provide the simulated frequentist coverage probabilities under the proposed priors.
In Section 4, we consider the bioequivalence problem. Two different drugs or formu-
lations of the same drugs are called bioequivalent if they are absorbed into the blood
and become available at the drug action site at about the same rate and concentration.
Bioequivalence of the two drugs is defined as the ratio of means is between the tolerance
limit prespecified by a regulatory agency. We calculate the posterior probabilities of the
hypotheses under Jeffreys’ prior, reference prior and matching prior. Also we provide
the Bayes factors. Two treatments AUC data are provided for equal variance case to
illustrate our results.

2. Development of Noninformative Priors

Let X7 = (X13,...,X iny) be arandom sample of size n; from a lognormal population
with parameters y; and 02 and X, = (X21,...,Xon,) be a random sample of size no
from a lognormal population with parameters us and o2. That is, log X;; and log X 2; are
independently and normally distributed with means p; and p. respectively and common
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variance o2. The parameter ) = pu; — po is of interest. Note that

E(Xy)  exp(u + 30%)
E(Xa;)  exp(pz + 10?)

= exp(f;). (2.1)

Thus the problem for the ratio of two means is equivalent to 8;.
The pdf of x1, 2 is given by

2 n;
n +n2 1
flzy, 2 pl,,uz,az) o (02)_ 3 exp Gy ZZ(Ingij - Mi)2 . (2.2)
i=1 j=1

In order to find priors, it is convenient to introduce orthogonal parametrization (Cox
and Reid, 1987). To this end, let

n +
ny + nog # ni + no

01 = U1 — M2, 02 = H2 and 93 = 0'2. (23)

With this parametrization, the likelihood has the alternate representation.

_rmitn 1 N9 2
0 2 - P — 0 -6
L(Ol, 2,93) X 03 exXp 203 ;(log.’tlj 1 n g 1 2)
+ i(long 1 g _ 02)2 . (2.4)
= A
Based on (2.3), the Fisher information matrix is given by
. ning ny+n2 Ny +ng

I6)=D , . 2.5
(6) = Diog ((n1 )b 65 202 ) 25)

Thus 6, is orthogonal to (62, 83) in the sense of Cox and Reid (1987).
We begin with Jeffreys’ prior given by

m7(8) o< |1(0)[%
o 672 (2.6)

This is a reference prior when all parameters are treated as equally important.
We consider now other reference priors. Let 8,y = {61} and 8() = {62,605}. Then
the Fisher information matrix can be expressed as

I(6) = Diag(h,(8), h2(9)),

where h1(0) = nina/((n1 +n2)63), h2(0) = Diag((n1 + n2)/63, (n1 + n2)/263). Hence,
from Theorem 1 of Datta and Ghosh (1995c¢) the two-group reference prior is given by

Tr(0) x 65 % (2.7)
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The one-at-a-time reference prior with the partition {6;}, {62}, {03} where 6; is the
parameter of interest, while the remaining parameters are considered in any arbitrary
order of importance. Writing the Fisher information matrix as

I(O) = Dia’g(hl (0)1 ha (0)7 h3(0))7

where h,(8) is same as before, but h2(0) = (n1 + n2)/63 and h3(8) = (n1 + ny)/(263).
Once again, an appeal to Theorem 1 of Datta and Ghosh (1995¢c) leads to the one-at-a-
time reference prior as
TR(0) o< 657 (2.8)
Let X = (X1, X3). For a prior , let 8;7%(m; X) denote the (1 — a)** percentile of
the posterior distribution of 6;, that is,

P[0, <0 *(mX)|X] =1-q, (2.9)
where 8 = (61, ...,6;)T and 6, is the parameter of interest. We want to find priors 7 for
which

P[6) <9;7(m; X)|6] =1 - a+o(n™%) (2.10)

for some u > 0, as n goes to infinity. Priors 7 satisfying (2.10) are called matching
priors. If u = 1/2, then = is referred to as a first order matching prior, while if u = 1, 7
is referred to as a second order matching prior.

From Tibshirani (1989), the class of first order probability matching priors is char-
acterized by

wr(0) o< To,0,(8)%q(63,63)
o 65 2 g(62,65), (2.11)

where q is any arbitrary positive-valued function differentiable in its arguments. Jeffreys’
prior as well as the other reference priors are all first order probability matching priors.

Clearly the class of prior given in (2.11) is quite large and it is important to narrow
down this class of priors. To this end, we consider the class of second order probability
matching priors as given Mukerjee and Ghosh (1997). Due to the orthogonality of 6;
with (f2,03), the class of second order probability matching priors is characterized by
solving a partial differential equation

3 3
%4(92, 03)'63—1 (11_1%-[/1,1,1) + Z Z a%{Il_l%Lllslsuq(OQ, 03)} = 0, (2.12)
v=2s=2 v

where L1 1 = E[(Blog L/801)3], Lis = E[(93 10gL/80f60s], s = 2,3 and I®¥ is the

(s,v)™" element of I~'(8), the inverse of the Fisher information matrix. Then (2.12)
simplifies to

15} 1
50 16440209} = . (2.13)
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A general class of solutions to the above equation is given by

q(02,6‘3) 0.6 03_§g(02), (214)

where g is a positive function, differential in its argument, but is otherwise arbitrary.
Thus the resulting second order probability matching prior is

75(0) x 85 1g(6-). (2.15)

We consider a particular second order matching prior when g is a constant in the above
matching prior. This prior is given by 85! which is the same as 75(8).

Based on the above calculations, it follows that m;(8), mz(@) and ws(0) belong to a
general class of priors of the form

7o (0) x 657 (2.16)

In particular, the choices a = 2, 3/2 and 1 lead respectively to 77, 7 and 7g. In the
original parameterization, the prior 7,(0) reduces to

Tap1, p2,0%) oc (0%) 7% (217)

We investigate the propriety of posteriors for a general class of priors which include
the Jeffreys’ prior, the reference prior and the second order matching prior. We consider
the class of priors

m(0) x 03¢, (2.18)
where a > 0. The following general theorem provides the propriety of posteriors.

Theorem 2.1 The posterior distribution of @ under the prior m, (2.18), is proper
ifny +ns+2a—-3>0.

The proof of this theorem is straightforward and is omitted. The marginal posterior of
6 under the prior (2.18) is given by

ny +n2 +2a-3
- )

nn
—1—2—-(91 -4+ 372)2} ) (2.19)

1|z, S?
(01 |x1 wz)OC{ +n1+n2

where Yij = 10g$z'j7 ¥ = 1/”1’ Z?Ll y;; and 52 = E?:l E;Zl(yij - ??i)z, J=1...,n
i=1, 2.

3. Simulation Study

We evaluate the frequentist coverage probability by investigating the credible interval
of the marginal posteriors density of #; under the noninformative prior 7 given in (2.18)
for several configurations (u1, p2, 02) and (n1,nz). That is to say, the frequentist coverage
of a (1 — a)* posterior quantile should be close to 1 — a.
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Table 3.1: Comparisons of Coverage Probability for Posterior Quantiles of 6;
with Equal Variances

0.05 0.95

n ne g Ty TR s Ty TR s

5 5 050073 0.062 0.050 | 0.929 0.940 0.950
1 10.072 0.061 0.051 | 0.929 0.940 0.950
10 [ 0.073 0.063 0.051 | 0.928 0.940 0.951

5 10 0.5 (0.061 0.054 0.048 |0.940 0.945 0.951
1 |0.064 0.058 0.051 ( 0.936 0.942 0.951
10 | 0.061 0.055 0.049 | 0.935 0.943 0.949

10 10 0.5|0.063 0.057 0.053 | 0.941 0.945 0.952
1 10.060 0.056 0.049 | 0.939 0.944 0.949
10 | 0.059 0.055 0.050 | 0.936 0.941 0.946

10 20 0.5 |0.056 0.052 0.050 | 0.945 0.948 0.951
1 10.056 0.0563 0.050 | 0.943 0.945 0.949
10 | 0.056 0.052 0.048 | 0.946 0.948 0.951

For fixed (u1, u2,0?) and (n1,ns), we take 10,000 independent random samples of
(@1, 22) from the model (2.2).

The Table 3.1 gives numerical values of the frequentist coverage probabilities of 0
to 0.05 and 0 to 0.95 posterior quantiles under the Jeffreys’, reference prior and second
order matching prior.

In Table 3.1, we can observe that the second order matching prior wg meets very
well the target coverage probabilities. This is intuitively clear since g is a second order
matching prior, but 7;, mg are not. Also note that the results of table are not much
sensitive to the change of the values of 6. Thus we recommend to use the second order
matching prior for the Bayesian inference for the ratio of the lognormal means with equal
variances.

4. Numerical Example in Bioequivalence Problems

In this section, we will illustrate our Bayesian method using a real-life example.
AUC data from an experiment with simultaneous administration of a test formulation
(z1) and a reference formulation (z3) in six male subjects (Alkalay et al., 1980). The
AUC data from this study are presented in Table 4.1 (n; = ny = 6). The sample means
are 38.618 and 39.440, and the sample standard deviations are 25.112 and 26.394. After
the log-transformation, the sample means are 3.499 and 3.508 and the sample standard

deviations are 0.590 and 0.614.
‘ The Shapiro-Wilk tests for the normality on the log-transformed data give a p-value of
0.191 for the test formulation group and a p-value of 0.185 for the reference formulation
group, while the same tests on the original data give a p-value of 0.079 for the test
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Table 4.1: AUC Data from an Experiment

z; 19.96 2037 52.42 21.37 8298 34.61
z2 1991 21.30 55.49 19.73 85.33 34.88

formulation group and a p-value of 0.084 for the reference formulation group. Therefore,
the log-transformation normalizes the data. The F-test for equal variances of the log-
transformed data between the two groups gives a p-value of 0.932, and therefore the
log-transformation stabilizes the variances.

We have two theories. Theory one says that two formulations are not bioequivalence,
i.e., Hy : 81 < Ky, or 81 > k. Theory two says that two formulations are bioequivalence,
i.e., Hy : ki < 61 < sy (Berger and Hsu, 1996). Here 6, is that logarithm transformation
be taken the ratio of the lognormal means.

The posterior probability of the null hypothesis is

JEL (01|, ®2)dbr + [ w(61]1, 22)db,

P(Hp|x1,22) = 55 , 4.1

(Ho|z1, ®2) = w(Orlw1, 23)d0, (4.1)
and the posterior probability of the alternative hypothesis is
U (61]x1, x2)dO

Pl jo1,22) = S TP 2D (42)

ffooo 7T(01 |a:1, :cg)d01 ’

where 7(0;|x1,x2) is the marginal posterior of 6; is given in (2.19).

In this case, n; = 6, ny = 6, §1 = 3.499, 7> = 3.508 and S? = 3.627.

Table 4.2 provides the posterior probabilities of the null hypothesis Hy and alternative
hypothesis H, corresponding to Jeffreys’ prior (7;), two group reference prior () and
second order probability matching prior (7g). Also Table 4.2 provides the Bayes factors
for Hy versus H,.

If we use ky = —k1, = log 1.25, the Bayes factor gives the weak evidence for H, for
;. Hence two formulations are bioequivalence. But the Bayes factor gives the weak
evidence for Hy for mg and 7g. Hence two formulations are bioinequivalence. This

discrepancy in the conclusion may be due to the poor performance of 7; as we already
noticed in Section 3.

Table 4.2: Posterior Probabilities and Bayes Factors with Equal Variances

wy = —kL = log1.25

Ty TR s
P(Holx1,x2) | 0496 0.515 0.536
P(H,|z1,@2) | 0.504 0.485 0.464

B2 0.984 1.062 1.155
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