• Title/Summary/Keyword: making robot

Search Result 192, Processing Time 0.035 seconds

Indoor Map Making Using Range Sensor of a Mobile Robot (이동 로봇의 영역센서를 이용한 실내 지도 작성)

  • Ko, Nak-Yong;Seo, Dong-Jin;Kim, Kwang-Jin;Moon, Yong-Seon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.370-372
    • /
    • 2008
  • 본 연구에서는 이동 로봇에 영역 센서를 장착하여 실내에서 주변환경을 인식하여 지도를 작성하는 방법을 제안한다. 이동 로봇이 미지의 환경에서 자율 주행하기 위해서는 로봇 환경에 대한 지도를 작성하면서 이 지도 상에서 로봇의 위치를 인식할 수 있어야한다. 지도 작성과 위치 인식을 동시에 수행하는 SLAM을 구현하기위한 준비단계로서 본 논문에서는 일정한 시간 간격으로 연속적인 센서 신호들로 부터 동일 특징을 추출하고 이들을 서로 일치시켜서 로봇 이동 및 센서 신호에 불확실성이 있는 경우에도 지도를 작성하는 방법을 연구한다. 실제로 레이저 영역 센서를 장착한 이동 로봇을 이용하여 실내에서 지도를 작성하는 실험을 통하여 제안된 방법의 성능을 검증한다.

  • PDF

A study on Development of Footwear Shape Scanner for Off-Line Robot Path Programming

  • Lho, Tae-Jung;Song, Se-Hoon;Ju, Hyun-Woo;Lee, Jung-Wook;Cho, Jae-Kung;Ahn, Hee-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.808-812
    • /
    • 2003
  • We need a lot of manpower and we can cut down a labor cost by applying industrial robots the footwear bonding automation process. In this study, we suggest how to program off-line robot path along a shoe's outsole shape in the footwear bonding process by 5-axis microscribe system like robot arms. This microscribe system development consists 5-axis microscribe mechanics, signal processing circuit, and PC with software. It is the system for making database of a shoe's outsole through the movement of a microscribe with many joints. To do this, first read 5-encoders' pulse values while a robot arm points a shoe's outsole shape from the initial status. Then, calculate a relative shoe's outsole by Denavit-Hatenberg's (D-H) direct Kinematics of known length of links and coordinate values. Next, calculate the encoders' pulse values of the robot arm's rotation and transmitting the angle pulse values to the PC through a circuit. Finally, it is able to display a shoe's outsole at real-time by computing the Denvavit-Hantenberg's (D-H) direct kinematics in the PC. With the coordinate values calculated above, we can draw a bonding gauge-line on the upper. Also, we can make off-line robot path programming compute a shoe's bonding area on the upper. These results will be effectively applied for programming a robot path on off-line and automatically.

  • PDF

Development of golf robot as entertainment using AVR Technology (AVR 기술을 활용한 엔터테인먼트용 골프로봇 개발)

  • Kim, Byoung-Soo;Oh, Kwan-Taek;Park, Young-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.344-347
    • /
    • 2006
  • Robot has been developed as something to help human beings, and robot will be very important field as an entertainment. This paper intends to contribute to developing golf robot for entertainment using AVR technology. It is believed that the entertaining robot giving a pleasure to human beings has good prospects for the rapid growth along with other robot industry. Golf robot developed in this paper has been developed for entertainment and has a similar sense in comparison with the real golf. This golf robot is represented in the way of putting the ball in the hall by hitting the ball just like the actual golf game and putting through making robot come close to the ball with the putting robot. This golf robot can play a game with several people like the acture golf if many putting robots can be used. It is, therefore considered that the development of golf robots for entertainment using AVR has a high value of the golf robot as an entertainer on the ground that it can play a real golf.

  • PDF

Fuzzy-supervised nonlinear $H_{\infty}$ controller design for robot manipulator (로봇 매니퓰레이터를 위한 퍼지 감독자 비선형 $H_{\infty}$ 제어기의 설계)

  • 박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.143-146
    • /
    • 1997
  • In this paper, we propose a fuzzy-supervised nonlinear H$_{\infty}$ controller which guarantees the robustness and has exact tracking performance for robot manipulator with system parameter uncertainty and exogenous disturbance, The proposed controller which is based on robotic H$_{\infty}$ controller has fuzzy supervisor which decides the optimal control input weighting value through fuzzy making-decision process. Owing to the fuzzy supervisor, The proposed controller can take the optimal control input. Then, we will apply the proposed controller to rigid robot manipulator to verify the performance of our controller.r.

  • PDF

Development of vision-based soccer robots for multi-agent cooperative systems (다개체 협력 시스템을 위한 비젼 기반 축구 로봇 시스템의 개발)

  • 심현식;정명진;최인환;김종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.608-611
    • /
    • 1997
  • The soccer robot system consists of multi agents, with highly coordinated operation and movements so as to fulfill specific objectives, even under adverse situation. The coordination of the multi-agents is associated with a lot of supplementary work in advance. The associated issues are the position correction, prevention of communication congestion, local information sensing in addition to the need for imitating the human-like decision making. A control structure for soccer robot is designed and several behaviors and actions for a soccer robot are proposed. Variable zone defense as a basic strategy and several special strategies for fouls are applied to SOTY2 team.

  • PDF

Study on the Effective Solution of Obstacle Avoidance Strategy for a Mobile Robot in the Guideline Navigation

  • Wang, Jiwu;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2015-2018
    • /
    • 2005
  • Obstacle avoidance is a basic skill to make a mobile robot move effectively and safely even in any arbitrarily given environment. Because of the difficulty of self-location caused by unavoidable slip and drift errors of sensors and effective detection of any encountered obstacle, only finite and simple obstacle avoidance strategies can be carried out. In this paper we mainly explored how to make a robot perform effectively obstacle detection and avoidance in the guideline navigation with one CCD video camera and some supersonic sensors. Making use of the specially designed guideline, the detection and calculation of the geometric dimensions of the encountered obstacle became simpler. And possible avoidance strategies appropriate to our navigation were studied and the simulations results were given.

  • PDF

A Milimeter-Sized Master-Slave Robot Driven by Condult-Guided Wires - (part 1.Force and positon control of a joint)

  • Kuribayashi, Katsutoshi;Park, Chang-Young;Miyazaki, Satoshi;Ono, Toshiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.985-989
    • /
    • 1990
  • This paper presents a fundamental study of a millimeter-sized master-slave robot driven by conduit-guided wires, which is expected to be applied to the delicate surgical operations, the assembling precise and small parts and so on. This system consists of a millimeter-sized slave robot and a master manipulator of which the size is adapted to a human finger. Displacement and torque of the master side can be reduced and transferred to the slave robot by controlling the motor torque against the master torque by feeding back tension signals. The master can feel the tensions by the motor torque. In this paper, the design method and making process of the master-slave system and the dynamical characteristic of displacement and torque control are proposed.

  • PDF

Variable Shapes Single-Tracked of Belt Type Wheel Mechanism (단일 궤도를 갖는 가변형 로봇 바퀴 구조)

  • Kim, Jee-Hong;Lee, Chang-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.198-202
    • /
    • 2009
  • Urban Search and Rescue (USAR) involves locating, rescuing (extricating), and medically stabilizing victims trapped in confined spaces. In this paper we state the current approach to USAR, address the limitations and discuss the way for moving in rugged topography. To achieve objectives such as surveillance, reconnaissance, and rescue, it is necessary to develop a driving mechanism that can handle rugged geographical features. We propose a new type of driving mechanism for a rescue robot that has a variable shape single-track. By using a variety shapes, it can get the gain of steering and rotating and the ability to overcome stairs. In this paper, we analyzed the design parameters for making variable transform shapes and determined the specifications of the robot to enhance adaptability to stairs.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.1
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

Development of the Underwater Cleaning Robot Platform for a Higher Efficiency (고효율 수중청소로봇 플랫폼 기술 개발)

  • Suh, Jin-Ho;Lee, Jung-Woo;Kim, Jong-Geol;Choi, Young-Ho;Choi, Il-Seop
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.74-84
    • /
    • 2017
  • This paper presents the development of the underwater cleaning robot platform for a higher efficiency in manufacturing industry. Human operators directly go into the cistern and clean sludge after drainage of the water so far. It is sometimes dangerous because of the harmful chemical materials from the product making process. In addition, it takes long time for water drainage and supplying it back. However, the robot cleaning operation does not need to drain water so that it could be applied to the sludge cleaning work at any time without the plant pause. Moreover, it can prevent the safety accidents because human operators are not necessary to enter directly the sludge cisterns. This paper shows the performance of cleaning work that can be applied in the industrial field through the design and development of underwater cleaning robot platform. And these results demonstrate that the developed underwater cleaning robot has great possibilities to clean other industrial water cisterns.