• 제목/요약/키워드: lower explosion limit(LEL)

검색결과 30건 처리시간 0.018초

지하 발전소 환기설비에 대한 안전성 평가 (The Safety Assessment for Ventilation Facilities of Underground Power Plant)

  • 고원경;강승규;정영대;김영구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.331-332
    • /
    • 2014
  • Underground power plant is required the strict safety management and safety assessment. Because it is the high risk of explosion by characteristic of enclosed space. In case gas leak of enclosed space, the ventilation facilities is very important in order to prevent explosion by the maintain less than the LEL(lower explosive limit). Thus, Through a safety assessment of ventilation volume is to reduce the risk for ventilation facilities in Underground power plant.

  • PDF

연소열을 이용한 가연성 혼합물의 폭발한계 예측 (Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion)

  • 하동명
    • 한국가스학회지
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2006
  • 폭발한계는 가연성물질의 화재 및 폭발 위험성을 결정하기 위해 사용되는 중요한 연소 특성치 가운데 하나이다. 폭발한계는 상대 연소에 따라 가연성물질을 구분하는데 사용된다. 이런 구분은 가연성물질의 안전한 취급, 처리, 수송을 위해서 중요하다. 본 연구에서는 가연성혼합물의 구성하는 각 순수성분의 연소열과 기상 조성을 이용하여 폭발한계를 예측하였다. 제시된 방법론에 의한 계산값은 적은 오차범위에서 문헌값과 일치하였다. 따라서 제시된 결과로부터 가연성혼합물의 폭발특성치 예측 방법과 다른 가연성혼합물의 폭발한계 예측에 폭넓게 적용되기를 기대한다.

  • PDF

3-헥사논의 화재 및 폭발 특성치의 측정 및 예측 (Measurement and Prediction of Fire and Explosion Properties of 3-Hexanone)

  • 하동명
    • 한국가스학회지
    • /
    • 제17권6호
    • /
    • pp.33-38
    • /
    • 2013
  • 3-헥사논의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀페식 장치에 의한 3-헥사논(에틸프로필케톤)의 하부인화점은 $18^{\circ}C$로 측정되었으며, 개방식에서는 $27^{\circ}C{\sim}32^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 3-헥사논의 최소자연발화온도는 $425^{\circ}C$로 측정되었다. 측정된 인화점에 의한 폭발하한계는 1.21 Vol%로 계산되었다.

태양전지 제조용 PCVD설비의 환기 성능 분석(폭발 방지 측면) (Analysis of Ventilation Performance of PCVD Facility for Solar Cell Manufacturing (Explosion Prevention Aspect))

  • 이성삼;안형환
    • 한국가스학회지
    • /
    • 제26권5호
    • /
    • pp.35-40
    • /
    • 2022
  • 태양광 전지 제조 설비인 PCVD(Plasma Chemical Vapor Deposition)는 NH3, SIH4, O2를 Chamber에 주입하여 생성된 Plasma를 Wafer에 증착시키는 설비이다. PCVD설비에서 Gas 이동과 주입이 Gas Cabinet에서 이루어지며, 내부에는 MFC, Regulator, Valve, Pipe 등이 복잡하게 연결되어 많은 누출 점이 존재한다. 폭발 상한값(UEL) 33.6%, 폭발 하한값(LEL) 15%의 NH3 누출 시 폭발을 예방하기 위해서는 NH3 농도가 폭발 범위에서 벗어날 수 있는 희석능력이 있어야 한다. 본 연구는 기존 PCVD의 Gas Cabinet에 대한 NH3 Gas 누출 시 희석능력을 3D와 수치로 확인할 수 있는 CFD 분석 기법을 활용하여 분석하였다. 그 결과 중희석에 해당되며 설비 개선을 통해 고환기가 가능하다는 결론을 얻었다.

노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측 (Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne)

  • 하동명
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.474-478
    • /
    • 2018
  • 공정안전을 위해서는 산업현장에서 취급하는 가연성물질의 화재 및 폭발 특성치가 있어야 한다. 사업장에서 사고를 예방하기 위한 연소특성치로 인화점, 연소점, 전폭발한계, 최소자연발화온도 등을 들 수 있다. 그러나 물질보건안전자료(MSDS)에서 제시하고 있는 특성치는 문헌들에 따라 달리 제시되고 있는데, 가연성물질을 안전하게 처리, 수송, 취급하기 위해서는 정확한 연소특성치가 필요하다. 화학산업에서 중간제품, 고무약품 등의 원료로 다양하게 사용되고 있는 노말에틸아닐린을 선정하였다. 그리고 노말에틸아닐린 안전한 취급을 위해서 인화점, 연소점 그리고 최소자연발화온도를 측정하였다. 노말에틸아닐린의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 노말에틸아닐린의 Setaflash 밀폐식은 $77^{\circ}C$, Pensky-Martens 밀폐식에서는 $82^{\circ}C$ 그리고 Tag 개방식에서는 $85^{\circ}C$, Cleveland 개방식에서는 $92^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 노말에틸아닐린의 최소자연발화온도는 $396^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점 $77^{\circ}C$에 의한 폭발하한계는 1.02 vol%로 계산되었다. 본 연구에서는 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다. 본 연구에서 제시된 노말에틸아닐린의 발화온도와 발화지연시간의 관계식은 노말에틸아닐린의 다른 발화온도에서도 발화지연시간의 예측이 가능해졌다.

아니솔의 연소특성치의 측정에 의한 MSDS의 적정성 (Appropriateness of MSDS by Means of the Measurement of Combustible Properties of Anisole)

  • 하동명
    • 한국화재소방학회논문지
    • /
    • 제29권2호
    • /
    • pp.20-24
    • /
    • 2015
  • 아니솔의 안전한 취급을 위해, 폭발한계는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, 밀폐식 장치에 의한 아니솔의 하부인화점은 $39^{\circ}C$$42^{\circ}C$로 측정되었으며, 개방식에서는 $50^{\circ}C$$54^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 아니솔의 최소자연발화온도는 $390^{\circ}C$로 측정되었다. 측정된 하부인화점에 의한 폭발하한계는 1.07 Vol%로 계산되었다.

아크릴릭산의 연소특성치의 신뢰성 연구 (A Study on the Reliability of the Combustible Properties for Acrylic Acid)

  • 하동명
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.20-26
    • /
    • 2015
  • 아크릴릭산 연소특성치의 신뢰도를 살펴보기 위해, 폭발한계에 대해서는 문헌을 통해 고찰하였고, 인화점과 발화지연시간에 의한 발화온도를 측정하였다. 그 결과, Setaflash와 Pensky-Martens 밀폐식 장치에 의한 아크릴릭산의 하부인화점은 $48^{\circ}C$$51^{\circ}C$로 측정되었으며, Tag와 Cleveland 개방식에서는 $56^{\circ}C$로 측정되었다. ASTM E659 장치를 사용하여 자연발화온도와 발화지연시간을 측정하였고, 아크릴릭산의 최소자연발화온도는 $417^{\circ}C$로 측정되었다. 측정된 하부인화점과 상부인화점에 의한 폭발하한계는 2.2 Vol%, 상한계는 7.9 Vol%로 계산되었다.

ALD 설비의 NH3(Ammonia)누출 시나리오에 대한 내부유동 및 제어 속도 해석 (Analysis of Internal Flow and Control Speed for NH3 (Ammonia) Leakage Scenario of ALD Facility)

  • 이성삼;안형환
    • 한국가스학회지
    • /
    • 제26권5호
    • /
    • pp.22-27
    • /
    • 2022
  • 반도체 생산 설비 중 ALD는 열이나 플라즈마로 분해한 Gas를 Wafer에 증착시켜 원자층을 형성시키는 설비로 주로 인화성 물질인 NH3와 SIH4이 사용된다. 이중 NH3는 연소·폭발 범위가 상한(UFL) 33.6%, 하한(LEL) 15%로 폭발 범위가 비교적 좁지만 많은 양이 갑자기 한곳에 모이면 폭발할 수 있고, 피부에 닿거나 흡입하면 치명적이다. NH3는 ALD Gas inlet의 배관과 전기·기계 기구를 통해 Chamber로 공급되는데 많은 누출 가능점이 존재하여 누출 시 화재·폭발 또는 중독 사고로 이어질 수 있어 NH3 누출 시나리오에 대한 내부 유동과 제어 속도를 이해하고 고환기가 가능한 배기장치를 설계하는 것이 필요하여 본 연구자는 NH3의 누출시나리오를 CFD에 적용하여 내부유동과 제어 속도를 수치 분석하여 설계 시 반영할 수 있도록 하였다.

디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구 (Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process)

  • 이창진;김래현
    • Korean Chemical Engineering Research
    • /
    • 제57권6호
    • /
    • pp.790-803
    • /
    • 2019
  • 디옥틸테레프탈산(DOTP) 제조공정은 분말형태의 테레프탈산(PTA) 주원료와 옥탄올(Octanol)의 에스테르화 반응을 통해 플라스틱 가소제를 생산하는 공정이다. 본 연구에서는 이 공정의 반응기 내에 가연성 용제나 유증기가 존재하고 있는 상태에서 분말형태로 맨홀에 직접 투입하는 테레프탈산의 분진폭발 특성에 관하여 고찰하였다. 분진의 입경과 입도분포 분진특성 실험을 하였고, 화재 폭발특성과 발화온도를 추정하기 위한 분진의 열분해 특성을 조사하였다. 또한 폭발민감도를 평가하기 위한 최소점화에너지 실험을 실시하였다. 실험결과 테레프탈산의 분체 특성은 평균입경이 $143.433{\mu}m$으로 나타났다. 이러한 입경과 입도분포 조건에서 실시한 열분석으로부터 분진의 발화온도는 약 $253^{\circ}C$로 나타났다. 테레프탈산의 폭발민감도를 알기 위해 조사한 폭발하한 농도(LEL)는 $50g/m^3$으로 측정되었다. 폭발민감도를 나타내는 최소점화에너지(MIE)는 (10 < MIE < 300) mJ로 나타났으며, 점화 확률에 기반하여 추산한 최소점화에너지 추정값(Es)은 210 mJ로서 충분한 점화원이 있는 경우 폭발할 수 있음을 알 수 있었다. 또한 폭발피해 예측에 필요한 폭발강도 특성을 조사한 결과, 테레프탈산 분진의 최대폭발압력($P_{max}$), 최대폭발압력상승속도[$({\frac{dP}{dt}})_{max}$]는 각각 7.1 bar, 511 bar/s로 나타났다. 분진폭발지수(Kst)는 139 mbar/s로 분진폭발등급 St 1에 해당되는 것으로 나타났다.

디노말부틸아민의 연소특성치 측정 및 예측 (Measurement and Prediction of Combustuion Properties of di-n-Buthylamine)

  • 하동명
    • 에너지공학
    • /
    • 제28권4호
    • /
    • pp.42-47
    • /
    • 2019
  • 본 연구에는 유화제, 살충제, 첨가제, 고무 가황 촉진제, 부식 억제제제 및 염료 생산의 원재료 등으로 다양하게 사용되고 있는 디노말부틸아민(di-n-buthylamine)을 선정하여 연소특성치를 측정하였다. 디노말부틸아민의 인화점은 밀폐식 Setaflash와 Pensky-Martens 그리고 개방식 Tag, Cleveland 장치로 측정하였고, 연소점은 개방식 장치를 이용하였다. 최소자연발화온도(AIT)는 ASTM 659E를 사용하였다. 그리고 디노말부틸아민의 폭발한계는 측정된 인화점을 이용하여 예측하였다. Setaflash와 Pensky-Martens에 의한 인화점은 38 ℃와 43 ℃로 측정되었고, Tag와 Cleveland는 각각 48로 동일하게 측정되었다. 디노말부틸아민의 AIT는 247 ℃로 측정되었다. Setaflash에서 측정된 인화점에 의한 폭발하한계는 0.69 vol%, 상한계는 7.7 vol%로 계산되었다. 본 연구에서 제시한 인화점 측정과 폭발한계의 예측 방법은 다른 가연성액체의 화재 및 폭발특성 연구에 활용이 가능하다.