DOI QR코드

DOI QR Code

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne

노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측

  • Ha, Dong-Myeong (Department of Occupational Health and Safety Engineering, Semyung University)
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2018.02.20
  • Accepted : 2018.05.16
  • Published : 2018.08.01

Abstract

For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

공정안전을 위해서는 산업현장에서 취급하는 가연성물질의 화재 및 폭발 특성치가 있어야 한다. 사업장에서 사고를 예방하기 위한 연소특성치로 인화점, 연소점, 전폭발한계, 최소자연발화온도 등을 들 수 있다. 그러나 물질보건안전자료(MSDS)에서 제시하고 있는 특성치는 문헌들에 따라 달리 제시되고 있는데, 가연성물질을 안전하게 처리, 수송, 취급하기 위해서는 정확한 연소특성치가 필요하다. 화학산업에서 중간제품, 고무약품 등의 원료로 다양하게 사용되고 있는 노말에틸아닐린을 선정하였다. 그리고 노말에틸아닐린 안전한 취급을 위해서 인화점, 연소점 그리고 최소자연발화온도를 측정하였다. 노말에틸아닐린의 폭발하한계는 실험에서 얻어진 하부인화점을 이용하여 계산하였다. 노말에틸아닐린의 Setaflash 밀폐식은 $77^{\circ}C$, Pensky-Martens 밀폐식에서는 $82^{\circ}C$ 그리고 Tag 개방식에서는 $85^{\circ}C$, Cleveland 개방식에서는 $92^{\circ}C$로 측정되었다. ASTM E659 장치에 의한 측정된 노말에틸아닐린의 최소자연발화온도는 $396^{\circ}C$로 측정되었다. Setaflash 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점 $77^{\circ}C$에 의한 폭발하한계는 1.02 vol%로 계산되었다. 본 연구에서는 밀폐식에 의해 측정된 노말에틸아닐린의 하부인화점을 이용하여 폭발하한계의 예측이 가능하였다. 본 연구에서 제시된 노말에틸아닐린의 발화온도와 발화지연시간의 관계식은 노말에틸아닐린의 다른 발화온도에서도 발화지연시간의 예측이 가능해졌다.

Keywords

References

  1. Kim, W. K., Kim, J. H., Ryu, J. W. and Choi, J. W., "The Measurement of the Explosion and the Minimum Oxygen Concentration of Gasoline According to Variation in Octane Number," Korean Chem. Eng. Res., 55(5), 618-622(2017). https://doi.org/10.9713/KCER.2017.55.5.618
  2. Ha, D. M., "The Measurement and Prediction of Combustible of Dimethylacetamide (DMAc)," Korean Chem. Eng. Res., 53(5), 553-556(2014). https://doi.org/10.1021/ie403426c
  3. Ha, D. M., "The Measurement and Prediction of the Combustible Properties of Propionic Anhydride," J. Korean Institute Gas, 20(3), 66-72(2016). https://doi.org/10.7842/KIGAS.2016.20.3.66
  4. Mitchell, J. W., Vratsanos, M. S., Hanley, B. F. and Parekh, V. S., "Experimental Flash Point of Industrial Amines," J. Chem. Eng. Data., 44, 209-211(1999). https://doi.org/10.1021/je980144h
  5. Chen, C. C. and Hsieh, Y. C., "Effect Of Experimental Conditions on Measuring Auto-ignition Temperature of Liquid Chemicals," Ind. Eng. Chem. Res., 49(12), 5925-5932(2010). https://doi.org/10.1021/ie9020649
  6. Peper, S., Dohrnand, R. and Konejung, K., "Methods for the Prediction of Thermodynamics Properties of Polyurethane Raw Materials Mixture," Fluid Phase Equilibria, 424, 137-151(2016). https://doi.org/10.1016/j.fluid.2015.12.020
  7. Britton, L. G., "Two Hundred Years of Flammable Limits," Process Safety Progress, 21(1), 1-11(2002). https://doi.org/10.1002/prs.680210104
  8. Lide, D. R., Handbook Chemistry and Physics, 76th ed., CRC Press(1996).
  9. Perry, R. H. and Green, D. W., Perry's Chemical Engineer's Hand- book, 7th ed., McGraw-Hill(1997).
  10. KOSHA, http://msds.kosha.or.kr/kcic/msdsdetail.do.
  11. Lenga, R. E. and Votoupal, K. L., The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III, Sigma Chemical Company and Aldrich Chemical Company Inc.(1993).
  12. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, National Fire Protection Association(1991).
  13. Lewis, R. J., SAX's Dangerous Properties of Industrial Materials, 11th ed., John Wiley & Son, Inc.(2004).
  14. Dean, J. A., Lange's Handbook of Chemistry, 14th ed. McGraw-Hill(1992).
  15. Stephenson, S. M., Flash Points of Organic and Organometallic Compounds, Elsevier(1987).
  16. Ha, D. M., "Measurement and Prediction of Fire and Explosion Characteristics of n-Butylacetate," J. Korean Society of Safety, 32(5), 25-31(2017). https://doi.org/10.14346/JKOSOS.2017.32.5.25
  17. Zabetakis, G. M., "Flammability Characteristics of Combustible Gases and Vapors," US Bureau of Mines, Bulletin(1965).
  18. Cho, S. J., Shin, J. S., Choi, S. H., Lee, E. S. and Park, S. J., "Optimization Study for Pressure Swing Distillation Process for the Mixture of Isobutyl-Acetate and Isobutyl-Alcohol System," Korean Chem. Eng. Res., 52(3), 307-313(2014). https://doi.org/10.9713/kcer.2014.52.3.307
  19. Semenov, N. N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J.(1959).