DOI QR코드

DOI QR Code

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process

디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구

  • Lee, Chang Jin (Department of New Energy Engineering, Seoul National University of Science & Technology) ;
  • Kim, Lae Hyun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 이창진 (서울과학기술대학교 에너지환경대학원) ;
  • 김래현 (서울과학기술대학교 화공생명공학과)
  • Received : 2019.07.01
  • Accepted : 2019.08.14
  • Published : 2019.12.01

Abstract

The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.

디옥틸테레프탈산(DOTP) 제조공정은 분말형태의 테레프탈산(PTA) 주원료와 옥탄올(Octanol)의 에스테르화 반응을 통해 플라스틱 가소제를 생산하는 공정이다. 본 연구에서는 이 공정의 반응기 내에 가연성 용제나 유증기가 존재하고 있는 상태에서 분말형태로 맨홀에 직접 투입하는 테레프탈산의 분진폭발 특성에 관하여 고찰하였다. 분진의 입경과 입도분포 분진특성 실험을 하였고, 화재 폭발특성과 발화온도를 추정하기 위한 분진의 열분해 특성을 조사하였다. 또한 폭발민감도를 평가하기 위한 최소점화에너지 실험을 실시하였다. 실험결과 테레프탈산의 분체 특성은 평균입경이 $143.433{\mu}m$으로 나타났다. 이러한 입경과 입도분포 조건에서 실시한 열분석으로부터 분진의 발화온도는 약 $253^{\circ}C$로 나타났다. 테레프탈산의 폭발민감도를 알기 위해 조사한 폭발하한 농도(LEL)는 $50g/m^3$으로 측정되었다. 폭발민감도를 나타내는 최소점화에너지(MIE)는 (10 < MIE < 300) mJ로 나타났으며, 점화 확률에 기반하여 추산한 최소점화에너지 추정값(Es)은 210 mJ로서 충분한 점화원이 있는 경우 폭발할 수 있음을 알 수 있었다. 또한 폭발피해 예측에 필요한 폭발강도 특성을 조사한 결과, 테레프탈산 분진의 최대폭발압력($P_{max}$), 최대폭발압력상승속도[$({\frac{dP}{dt}})_{max}$]는 각각 7.1 bar, 511 bar/s로 나타났다. 분진폭발지수(Kst)는 139 mbar/s로 분진폭발등급 St 1에 해당되는 것으로 나타났다.

Keywords

References

  1. Chen, C. C., Wang, T. C., Chen, L. Y., Dai, J. H. and Shu, C. M., "Loss Prevention in the Petrochemical and Chemical-process High-tech Industries in Taiwan," J. Loss Prev. Process Ind., 23, 531-538(2010). https://doi.org/10.1016/j.jlp.2010.04.006
  2. Klippel, A., Schmidt, M. and Krause, U., "Dustiness in Workplace Safety and Explosion Protection e Review and Outlook," J. Loss Prev. Process Ind., 34, 22-29(2015). https://doi.org/10.1016/j.jlp.2015.01.011
  3. Kaelin Sr., D. E. and Prugh, R. W., "Explosible Dusts, US Codes and Standards of Safe Management Practices," Process Saf. Prog., 25, 298-302(2006). https://doi.org/10.1002/prs.10155
  4. US, CSB Investigations., (2015), http://www.csb.gov/.
  5. US, Investigation Reportecombustible Dust Hazard Study, US Chemical Safety and Hazard Investigation Board., (2006). http://www.csb.gov/.
  6. Skjold, T. and Wingerden, K. V., "Investigation of an Explosion in a Gasoline Puri-fication Plant," Process Saf. Prog., 32, 268-276(2013). https://doi.org/10.1002/prs.11584
  7. Han, W. S., Han, I. S., Lee, J. S. and Park, S. Y., "Fire and Explosion Visk Assessment of Terephthalic Acid," (2006).
  8. Paul, R. Amyotte, Rolf K. Eckhoff, Dust explosion causation, prevention and mitigation: An overview., (2010).
  9. ASTM E 537-12, Standard test method for the thermal stability of chemicalsby Differential Scanning Calorimeter, PA: ASTM International., (2007).
  10. ASTM, "Standard Test Method for Minimum Ignition Energy of a Dust Cloud in Air," E(2019)., West Conshohocken, PA: ASTM International(2007).
  11. British standards institution BS EN 13821., Potentially Explosive Atmosphere(2002).
  12. IEC 61241-2-1, "Methods for Determining the Minimum Ignition Temperatures of Dust," (1994).
  13. Eckhoff, R. K., Dust explosions in the process industries-3rd ed., Gulf professional publishing(2003).
  14. Lin, S.-Y., Lin, T.-H., Cheng, Y.-C., Hsueh, K.-H., Shu, C.-M., "Assessment of Dust Explosion with Adipic Acid and p-terephthalic Acid in the Powdered Resin Process," Journal of Loss Prevention in the Process Industries 43, 92-97(2016). https://doi.org/10.1016/j.jlp.2016.05.003