• Title/Summary/Keyword: low-temperature bonding

Search Result 305, Processing Time 0.027 seconds

X-ray Diffraction and Infrared Spectroscopy Studies on Crystal and Lamellar Structure and CHO Hydrogen Bonding of Biodegradable Poly(hydroxyalkanoate)

  • Sato Harumi;Murakami Rumi;Zhang Jianming;Ozaki Yukihiro;Mori Katsuhito;Takahashi Isao;Terauchi Hikaru;Noda Isao
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.408-415
    • /
    • 2006
  • Temperature-dependent, wide-angle, x-ray diffraction (WAXD) patterns and infrared (IR) spectra were measured for biodegradable poly(3-hydroxybutyrate) (PHB) and its copolymers, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(HB-co-HHx) (HHx=2.5, 3.4, 10.5, and 12 mol%), in order to explore their crystal and lamellar structure and their pattern of C-H...O=C hydrogen bonding. The WAXD patterns showed that the P(HB-co-HHx) copolymers have the same orthorhombic system as PHB. It was found from the temperature-dependent WAXD measurements of PHB and P(HB-co-HHx) that the a lattice parameter is more enlarged than the b lattice parameter during heating and that only the a lattice parameter shows reversibility during both heating and cooling processes. These observations suggest that an interaction occurs along the a axis in PHB and P(HB-co-HHx). This interaction seems to be due to an intermolecular C-H...O=C hydrogen bonding between the C=O group in one helical structure and the $CH_3$ group in the other helical structure. The x-ray crystallographic data of PHB showed that the distance between the O atom of the C=O group in one helical structure and the H atom of one of the three C-H bonds of the $CH_3$ group in the other helix structure is $2.63{\AA}$, which is significantly shorter than the sum of the van der Waals separation ($2.72{\AA}$). This result and the appearance of the $CH_3$ asymmetric stretching band at $3009 cm^{-1}$ suggest that there is a C-H...O=C hydrogen bond between the C=O group and the $CH_3$ group in PHB and P(HB-co-HHx). The temperature-dependent WAXD and IR measurements revealed that the crystallinity of P(HB-co-HHx) (HHx =10.5 and 12 mol%) decreases gradually from a fairly low temperature, while that of PHB and P(HB-co-HHx) (HHx = 2.5 and 3.5 mol%) remains almost unchanged until just below their melting temperatures. It was also shown from our studies that the weakening of the C-H...O = C interaction starts from just above room temperature and proceeds gradually increasing temperature. It seems that the C-H...O=C hydrogen bonding stabilizes the chain holding in the lamellar structure and affects the thermal behaviour of PHB and its copolymers.

라텍스개질 콘크리트의 열팽창 특성 분석 (Analysis of Thermal Expansion of Latex-Modified Concrete)

  • 최성용;이주형;임홍범;윤경구
    • 산업기술연구
    • /
    • 제23권A호
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

Forced Potential Scheme 미세 가열기를 이용한 부분 가열 저온 Hermetic 패키징 (Low Temperature Hermetic Packaging by Localized Heating using Forced Potential Scheme Micro Heater)

  • 심영대;신규호;좌성훈;김용준
    • 마이크로전자및패키징학회지
    • /
    • 제10권2호
    • /
    • pp.1-5
    • /
    • 2003
  • 기존 형상의 미세 가열기를 이용한 마이크로 시스템 패키징의 문제점을 해결하기 위해 새로운 형상의 미세 가열기를 제작하여 패키징 실험을 시행하였다. 기존 형상의 미세 가열기와 새로운 미세 가열기의 형상을 각각 제작하여 접합시에 미세 가열기에 발생하는 열분포를 IR카메라를 이용하여 실험하였다. 기존 형상의 미세 가열기가 불균일하게 가열되는 반면, 새로운 형상의 미세 가열기는 매우 균일하게 가열되는 형상을 나타내었고, IR 카메라를 이용한 실험 결과를 바탕으로 각기 다른 형상의 미세 가열기를 이용하여 접합 실험을 실시하였다. 접합 실험시 사용한 미세 가열기는 폭 $50{\mu}m$, 두께 $2{\mu}m$로 제작하였으며, 0.2Mpa 의 압력을 Pyrex glass cap에 가한 상태에서 150mA의 전류를 공급하여 접합을 완료하였다. 접합이 완료된 시편들에 대해서 IPA를 통한 leakage check실험을 실시하였으며, 기존 형상의 미세 가열기를 이용한 시편들은 66%가 테스트를 통과한 반면 새로운 형상의 미세 가열기를 이용한 시편들은 85%이상이 테스트를 통과하였다. Leakage 실험을 통과한 각각의 시편들에 대해서 접합력 측정을 실시한 결과, 기존 형상의 미세 가열기를 이용한 시편들은 15∼21Mpa의 접합력을 나타내었고, 새로운 형상의 미세 가열기를 이용한 시편들은 25∼30Mpa의 우수한 접합력을 나타내었다.

  • PDF

SnBi 저온솔더의 플립칩 본딩을 이용한 스마트 의류용 칩 접속공정 (Chip Interconnection Process for Smart Fabrics Using Flip-chip Bonding of SnBi Solder)

  • 최정열;박동현;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제19권3호
    • /
    • pp.71-76
    • /
    • 2012
  • SnBi 저온솔더의 플립칩 공정을 이용한 스마트 의류용 칩 접속공정에 대해 연구하였다. 캐리어 필름에 형성한 Cu 리드프레임을 $130^{\circ}C$에서 직물에 열압착 시킴으로써 Cu 리드프레임이 전사된 직물 기판을 형성하였다. 칩 시편에 SnBi 페이스트를 도포하여 솔더범프를 형성한 후 직물 기판의 Cu 리드프레임에 배열하고 $180^{\circ}C$에서 60초 동안 유지시켜 플립칩 본딩하였다. SnBi 저온솔더를 사용하여 형성된 스마트 의류용 플립칩 접속부의 평균 접속저항은 $9m{\Omega}$이었다.

EBSD측정에 의한 반복겹침접합압연된 무산소동의 두께방향으로의 미세조직 변화 분석 (Microstructural Evolution Analysis in Thickness Direction of An Oxygen Free Copper Processed by Accumulative Roll-Bonding Using EBSD Measurement)

  • 이성희;임차용
    • 한국재료학회지
    • /
    • 제24권11호
    • /
    • pp.585-590
    • /
    • 2014
  • Microstructural evolution in the thickness direction of an oxygen free copper processed by accumulative rollbonding (ARB) is investigated by electron back scatter diffraction (EBSD) measurement. For the ARB, two copper alloy sheets 1 mm thick, 30 mm wide and 300 mm long are first degreased and wire-brushed for sound bonding. The sheets are then stacked and roll-bonded by about 50% reduction rolling without lubrication at an ambient temperature. The bonded sheet is then cut to the two pieces of the same dimensions and the same procedure was repeated on the sheets up to eight cycles. The specimen after 1 cycle showed inhomogeneous microstructure in the thickness direction so that the grains near the surface were finer than those near the center. This inhomogeneity decreased with an increasing number of ARB cycles, and the grain sizes of the specimens after 3 cycles were almost identical. In addition, the aspect ratio of the grains decreased with an increasing number of ARB cycles due to the subdivision of the grains by shear deformation. The fraction of grains with high angle grain boundaries also increased with continuing process of the ARB so that it was higher than that of the low angle grain boundaries in specimens after 3 cycles. A discontinuous dynamic recrystallization occurred partially in specimens after 5 cycles.

전자빔 조사가 ZnO 박막의 전기적 특성 변화에 미치는 영향 (Influence of Electron Beam Irradiation on the Electrical Properties of ZnO Thin Film Transistor)

  • 최준혁;조인환;김찬중;전병혁
    • 한국전기전자재료학회논문지
    • /
    • 제30권1호
    • /
    • pp.54-58
    • /
    • 2017
  • The effect of low temperature ($250^{\circ}C$) heat treatment after electron irradiation (irradiation time = 30, 180, 300s) on the chemical bonding and electrical properties of ZnO thin films prepared using a sol-gel process were examined. XPS (X-ray photoelectron spectroscopy) analysis showed that the electron beam irradiation decreased the concentration of M-O bonding and increased the OH bonding. As a result of the electron beam irradiation, the carrier concentration of ZnO films increased. The on/off ratio was maintained at ${\sim}10^5$ and the $V_{TH}$ values shifted negatively from 11 to 1 V. As the irradiation time increased from 0 to 300s, the calculated S. S. (subthreshold swing) of ZnO TFTs increased from 1.03 to 3.69 V/decade. These values are superior when compared the sample heat-treated at $400^{\circ}C$ representing on/off ratio of ${\sim}10^2$ and S. S. value of 10.40 V/decade.

상온접합 본딩이 있는 복합재 날개의 저온 구조시험 (Low Temperature Structural Tests of a Composite Wing with Room Temperature-Curing Adhesive Bond)

  • 하재석;박찬익;이기범
    • 한국항공우주학회지
    • /
    • 제43권10호
    • /
    • pp.928-935
    • /
    • 2015
  • 본 논문에서는 상온접합이 있는 무인기 복합재 날개의 저온 구조시험에 대하여 소개하였다. 본 시험에 사용된 날개구조는 탄소섬유 강화 복합재료로 구성되며, 내부 구조물과 스킨은 상온접착제로 접합되었다. 또한 날개구조의 손상허용성을 검증하기 위하여 육안으로 확인이 거의 불가능한 충격손상을 스킨의 주요 부위에 인위적으로 적용하였다. 무인기 운용 고도의 온도환경을 모사하기 위한 저온 챔버를 특별히 제작하였으며, 날개구조는 챔버내에 고정시키고 챔버 외부에 설치한 유압 작동기를 이용하여 하중을 부가하였다. 구조시험은 변형률 개관 시험 및 1배 수명 피로하중 스펙트럼에 대한 손상허용시험으로 구성된다. 변형률 게이지와 광섬유 센서를 이용하여 본딩영역 및 주요 부위의 변형률을 측정하였으며, 압전 구동기/센서를 이용하여 손상의 변화를 모니터링 하였다. 시험결과로부터 날개구조는 1배 수명에 대한 운용환경을 모사한 환경 하에서 구조적 건전성을 보유하고 있음을 확인하였다.

ICP Source를 이용한 저온 증착 a-SiNx:H 특성 평가 (Low Temperature Deposition a-SiNx:H Using ICP Source)

  • 강성칠;이동혁;소현욱;장진녕;홍문표;권광호
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.532-536
    • /
    • 2011
  • The silicon nitride films were prepared by chemical vapor deposition using inductively coupled plasma. During the deposition, the substrate was heated at $150^{\circ}C$ and power 1,000 W. To evolution low temperature manufacture, we have studied the role of source gases, $SiH_4$, $NH_3$, $N_2$, and $H_2$, to produce Si-N and N-H bond in a-SiNx:H film growth. $SiH_4$, $NH_3$, and $N_2$ flow rate fixed at 100, 10, and 10 sccm, $H_2$ flow rate varied from 0 to 10 sccm by small scale. To get the electrical characteristics, we makes MIM structure, and analysis surface bonding state. Experimental data show that Si-N and N-H bond is increased and hence electrical characteristics is showed 3 MV/cm breakdown-voltage, and leakage-current $10^{-7}\;A/cm^2$.

초 고온·고압 소결 공정으로 제조된 다결정 다이아몬드 컴팩트(PDC)의 미세조직 및 열충격 특성에 미치는 다이아몬드 입자 비율의 영향 (Effect of Diamond Particle Ratio on the Microstructure and Thermal Shock Property of HPHT Sintered Polycrystalline Diamond Compact (PDC))

  • 김지원;박희섭;조진현;이기안
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.111-115
    • /
    • 2015
  • This study investigates the microstructure and thermal shock properties of polycrystalline diamond compact (PDC) produced by the high-temperature, high-pressure (HPHT) process. The diamond used for the investigation features a $12{\sim}22{\mu}m$- and $8{\sim}16{\mu}m$-sized main particles, and $1{\sim}2{\mu}m$-sized filler particles. The filler particle ratio is adjusted up to 5~31% to produce a mixed particle, and then the tap density is measured. The measurement finds that as the filler particle ratio increases, the tap density value continuously increases, but at 23% or greater, it reduces by a small margin. The mixed particle described above undergoes an HPHT sintering process. Observation of PDC microstructures reveals that the filler particle ratio with high tap density value increases direct bonding among diamond particles, Co distribution becomes even, and the Co and W fraction also decreases. The produced PDC undergoes thermal shock tests with two temperature conditions of 820 and 830, and the results reveals that PDC with smaller filler particle ratio and low tap density value easily produces cracks, while PDC with high tap density value that contributes in increased direct bonding along with the higher diamond content results in improved thermal shock properties.

Effects of metal surface grinding at the porcelain try-in stage of fixed dental prostheses

  • Kilinc, Halil Ibrahim;Kesim, Bulent;Gumus, Hasan Onder;Dincel, Mehmet;Erkaya, Selcuk
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.317-324
    • /
    • 2014
  • PURPOSE. This study was to evaluate the effect of grinding of the inner metal surface during the porcelain try-in stage on metal-porcelain bonding considering the maximum temperature and the vibration of samples. MATERIALS AND METHODS. Ninety-one square prism-shaped ($1{\times}1{\times}1.5mm$) nickel-chrome cast frameworks 0.3 mm thick were prepared. Porcelain was applied on two opposite outer axial surfaces of the frameworks. The grinding was performed from the opposite axial sides of the inner metal surfaces with a low-speed handpiece with two types of burs (diamond, tungsten-carbide) under three grinding forces (3.5 N, 7 N, 14 N) and at two durations (5 seconds, 10 seconds). The shear bond strength (SBS) test was performed with universal testing machine. Statistical analyzes were performed at 5% significance level. RESULTS. The samples subjected to grinding under 3.5 N showed higher SBS values than those exposed to grinding under 7 N and 14 N (P<.05). SBS values of none of the groups differed from those of the control group (P>.05). The types of bur (P=.965) and the duration (P=.679) did not affect the SBS values. On the other hand, type of bur, force applied, and duration of the grinding affected the maximum temperatures of the samples, whereas the maximum vibration was affected only by the type of bur (P<.05). CONCLUSION. Grinding the inner metal surface did not affect the metal-porcelain bond strength. Although the grinding affected the maximum temperature and the vibration values of the samples, these did not influence the bonding strength.