Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.1.54

Influence of Electron Beam Irradiation on the Electrical Properties of ZnO Thin Film Transistor  

Choi, Jun Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
Cho, In Hwan (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
Kim, Chan-Joong (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
Jun, Byung-Hyuk (Neutron Utilization Technology Division, Korea Atomic Energy Research Institute)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.1, 2017 , pp. 54-58 More about this Journal
Abstract
The effect of low temperature ($250^{\circ}C$) heat treatment after electron irradiation (irradiation time = 30, 180, 300s) on the chemical bonding and electrical properties of ZnO thin films prepared using a sol-gel process were examined. XPS (X-ray photoelectron spectroscopy) analysis showed that the electron beam irradiation decreased the concentration of M-O bonding and increased the OH bonding. As a result of the electron beam irradiation, the carrier concentration of ZnO films increased. The on/off ratio was maintained at ${\sim}10^5$ and the $V_{TH}$ values shifted negatively from 11 to 1 V. As the irradiation time increased from 0 to 300s, the calculated S. S. (subthreshold swing) of ZnO TFTs increased from 1.03 to 3.69 V/decade. These values are superior when compared the sample heat-treated at $400^{\circ}C$ representing on/off ratio of ${\sim}10^2$ and S. S. value of 10.40 V/decade.
Keywords
Electron beam irradiation; Oxide semiconductor; Oxygen vacancy; Sol-gel; ZnO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Atsushi, K. Masashi, O. Akira, O. Takeyoshi, O. Keita, O. Hideo, F. C. Shigefusa, and K. Masashi, Jpn. J. Appl. Phys., 44, L643 (2005). [DOI: https://doi.org/10.1143/JJAP.44.L643]   DOI
2 S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett., 93, 181106 (2008). [DOI: https://doi.org/10.1063/1.3012579]   DOI
3 S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth, 225, 110 (2001). [DOI: https://doi.org/10.1016/S0022-0248(01)00830-2]   DOI
4 A. Janotti and C.G.V. Walle, Phys. Rev. B, 76, 165202 (2007). [DOI: https://doi.org/10.1103/PhysRevB.76.165202]   DOI
5 Y. T. Parabhu, K. V. Rao, V.S.S. Kumar, and B. S. Kumari, Sci. Res., 2, 45 (2013).
6 J.C.C. Fan and J. B. Goodenough, J. Appl. Phys., 48, 3524 (1997). [DOI: https://doi.org/10.1063/1.324149]
7 T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys., 73, 4344 (1993). [DOI: https://doi.org/10.1063/1.352818]   DOI
8 B. D. Ahn, J. H. Lim, M. H. Cho, J. S. Park, and K. B. Chung, J. Phys. D: Appl. Phys., 45, 415307 (2012). [DOI: https://doi.org/10.1088/0022-3727/45/41/415307]   DOI
9 S. Jeong, Y. Jeong, and J. Moon, J. Phys. Chem. C, 112, 11082 (2008). [DOI: https://doi.org/10.1021/jp803475g]   DOI
10 S. Jeong, Y. Ha, J. Moon, A. Facchetti, and T. J. Marks, Adv. Mater., 22, 1346 (2010). [DOI: https://doi.org/10.1002/adma.200902450]   DOI
11 T. H. Jeong, S. J. Kim, D. H. Yoon, W. H. Jeong, D. L. Kim, H. S. Lim, and H. J. Kim, Jpn. J. Appl. Phys., 50, 070202 (2011). [DOI: https://doi.org/10.7567/JJAP.50.70202]   DOI
12 D. H. Yoon, S. J. Kim, W. H. Jeong, D. L. Kim, Y. S. Rim, and H. J. Kim, J. Cryst. Growth, 326, 171 (2011). [DOI: https://doi.org/10.1016/j.jcrysgro.2011.01.090]   DOI
13 S. K. Jeong, M. H. Kim, S. Y. Lee, H. Seo, and D. K. Choi, Nano Res. Lett., 9, 619 (2014). [DOI: https://doi.org/10.1186/1556-276X-9-619]   DOI
14 S. J. Kim, A. R. Song, S. S. Lee, S. Nahm, Y. Choi, S. Jeong, and K. B. Chung, J. Mater. Chem. C, 3, 1457 (2014). [DOI: https://doi.org/10.1039/C4TC02408G]
15 B. D. Ahn, K. B. Chung, and J. S. Park, J. Elctroceram., 34, 229 (2015).   DOI