• Title/Summary/Keyword: low-power and low-voltage circuit

Search Result 1,091, Processing Time 0.023 seconds

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.

Low-Power Fully Digital Voltage Sensor using 32-nm FinFETs

  • Nguyen, H.V.;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.10-16
    • /
    • 2016
  • In this paper, a design for a fully digital voltage sensor using a 32-nm fin-type field-effect transistor (FinFET) is presented. A new characteristic of the double gate p-type FinFET (p-FinFET) is examined and proven appropriate for sensing voltage variations. On the basis of this characteristic, a novel technique for designing low-power voltage-to-time converters is presented. Then, we develop a digital voltage sensor with a voltage range of 0.7 to 1.1V at a 50-mV resolution. The performance of the proposed sensor is evaluated under a range of voltages and process variations using Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, and the sensor is proven capable of operating under ultra-low power consumption, high linearity, and fairly high-frequency conditions (i.e., 100 MHz).

The Low Voltage Analog Multiplier Using The Bulk-driven MOSFET Techniques (Bulk-Driven 기법을 이용한 저전압 Analog Multiplier)

  • 문태환;권오준;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.301-304
    • /
    • 2001
  • The analog multiplier is very useful building block in many circuits such as filter, frequency-shifter, and modulators. In recent year, The main design issue of circuit designer is low-voltage/low-power system design, because of all systems are recommended very integrated system and portable system In this paper, the proposed the four-quadrant analog multiplier is using the bulk-driven techniques. The bulk-driven technique is very useful technique in low-voltage system, compare with gate-driven technique. therefore the proposed analog multiplier is operated in 1V supply voltage. And the proposed analog multiplier is low power dissipation compare with the others. therefor the proposed analog multiplier is convenient in low-voltage/low-power in system.

  • PDF

A Low-Voltage Low-Power Delta-Sigma Modulator for Cardiac Pacemaker Applications (심장박동 조절장치를 위한 저전압 저전력 델타 시그마 모듈레이터)

  • Chae, Young-Cheol;Lee, Jeong-Whan;Lee, In-Hee;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • A low voltage, low power delta-sigma modulator is proposed for cardiac pacemaker applications. A cascade of delta-sigma modulator stages that employ a feedforward topology has been used to implement a high-resolution oversampling ADC under the low supply. An inverter-based switched-capacitor circuit technique is used for low-voltage operation and ultra-low power consumption. An experimental prototype of the proposed circuit has been implemented in a $0.35-{\mu}m$ CMOS process, and it achieves 61-dB SNDR, 63-dB SNR, and 65-dB DR for a 120-Hz signal bandwidth at 7.6-kHz sampling frequency. The power consumption is only 280 nW at 1-V power supply.

Design of AC PDP driving Circuit for Low Power Consumption (저전력화를 위한 AC형 PDP구동회로의 설계)

  • Jang, Yoon-Seok;Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2014-2019
    • /
    • 2006
  • PDP driving circuit requires switching devices and capacitors to stand up high voltages over 160V. This is the main cause that the power consumption and the cost of a PDP driving circuit increase. Conventional PDP driving circuits consist of 3 voltage sources and 16 switching devices. In this paper, we propose a PDP driving circuit using 2 voltage sources and 12 switching devices that can be operated with a lower supply voltage than conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation. Simulation results show that the output signal can drive PDP cell when the supply voltage is higher than 45V in the input frequency range 70kHz to 100kHz.

Design of New LED Drive using Energy Recovery Circuit (에너지 회수 회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lim, Sang-Kil;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.9-17
    • /
    • 2011
  • The high-power LED (Light Emitting Diode) which is recently gaining popularity as a digital light source has such advantages as low power consumption, long life, fast switching speed, and high efficiency. Thus, many efforts are being made to use the high-power LEDs for general lighting. This paper proposes LED driving circuit uses a DC/DC converter that can recover energy to compensate for the current variations caused by changes in LED equivalent resistance following a temperature change instead of serial resistance. The maximum input voltage of this DC/DC converter has low voltage variations by temperature change when the rated current is formed. In order to return current to the input side, we need a high boosting at low power. Thus, to improve the low efficiency of power converter, the power converter can be configured in such a way to gather the powers of low-capacity DC/DC converters and return the total power. Experiments showed that the proposed system improved efficiency compared to the conventional LED drive using the existing DC/DC converter.

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

A New Level Shifter using Low Temperature poly-Si TFTs

  • Shim, Hyun-Sook;Kim, Jong-Hun;Cho, Byoung-Chul;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1015-1018
    • /
    • 2004
  • We proposed a new cross-coupled level shifter circuit using low temperature poly-Si(LTPS) TFT. The proposed level shifter can operate on low input voltage in spite of low mobility and widely varying high threshold voltage of LTPS TFT. Also, the proposed level shifter operates at high frequency and reduces power consumption for having fast rising and falling time and shortening period flowing short-circuit currents.

  • PDF

Novel Zero-Voltage and Zero-Current-Switching (ZVZCS) Full Bridge PWM Converter with a Low Output Current Ripple (낮은 인덕터 맥동전류를 가지는 새로운 영전압 영전류 스위칭 풀 브릿지 DC/DC 컨버터)

  • Baek, J.W.;Cho, J.G.;Yoo, D.W.;Song, D.I.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2204-2206
    • /
    • 1997
  • A novel zero voltage and zero current switching (ZVZCS) full bridge (FB) PWM converter with a low output current ripple is proposed. The proposed circuit improve the demerits of the previously presented ZVBCS-FB-PWM converters[5-8] such as use of lossy components or additional active switches. A simple auxiliary circuit which includes neither lossy components nor active switches provides ZVZCS conditions to primary switches, ZVS for leading-leg switches and ZCS for lagging-leg switches. In addition, this proposed circuit reduces a output current ripple considerably. Many advantages including simple circuit topology, high efficiency, low cost and low current ripple make the new converter attractive far high power (> 1kW) applications.

  • PDF