• Title/Summary/Keyword: low thermal process

Search Result 1,045, Processing Time 0.026 seconds

Wear Behavior of Al/SiC in Thermal Spray Process (알루미늄 판 표면에 용사된 Al/SiC의 마모 거동)

  • Kim, H.J.;You, M.H.;Lee, S.H.;Lee, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.111-116
    • /
    • 2006
  • Tribologcal property of the ceramics used in severe condition was investigated and both $Al_2O_3$ ball and Al/SiC composite made by thermal spray process[TSP] were used as a specimen in this study. Four kinds of material couple in ball and disk specimens were tested in the dry condition by using ball-on-disk type tribo-tester. Friction coefficient, surface roughness, wear rate, and photograph of the worn surface were investigated. Generally, High SiC contents[$40{\sim}50%$] specimens showed very low friction coefficient below 0.05 and little wear rate in dry condition. And also, low SiC contents[0%] specimens showed a moderate wear rate and high coefficient of friction at the same condition.

  • PDF

Field Enhanced Rapid Thermal Process for Low Temperature Poly-Si TFTs Fabrications

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.665-667
    • /
    • 2005
  • VIATRON TECHNOLOGIES has developed FE-RTP system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The system employs sequential heat treatment methods using temperature control and rapid thermal processor modules. The temperature control modules provide exceptionally uniform heating and cooling of the glass substrates to within ${\pm}2^a\;C$. The rapid thermal process that combines heating with field induction accelerates the treatment rates. The new FE-RTP system can process $730{\times}920mm$ glass substrates as thin as 0.4 mm. The uniform nature of poly-Si films produced by FE-RTP resulted in AMOLED panels with no laser-Muras. Furthermore, FE-RTP system also showed superior performances in other heat treatment processes involved in poly-Si TFT fabrications, such as dopant activation, gate oxide densification, hydrogenation, and pre-compaction.

  • PDF

Low Temperature Thermal Oxidation using ECR Oxygen Plasma (ECR 산소 플라즈마를 이용한 저온 열산화)

  • 이정열;강석원;이진우;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.68-77
    • /
    • 1995
  • Characteristics of electron cyclotron resonance (ECR) plasma thermal oxide grown at low-temperature have been investigated. The effects of several process parameters such as substrate temperature, microwave power, gas flow rate, and process pressure on the growth rate of the oxide have been also investigated. It was found that the plasma density, reactive ion species, is strongly related to the growth rate of ECR plasma oxied. It was also found that the plasma density increases with microwave power while it decreases with decreasing O2 flow rate. The oxidation time dependence of the oxide thichness showed parabolic characteristics. Considering ECR plasma thermal oxidation at low-temperature, the linear as well as parabolic rate constants calculated from fitting data by using the Deal-Grove model was very large in comparison with conventional thermal oxidation. The ECR plasma oxide grown on (100) crystalline-Si wafer exhibited good electrical characteristics which are comparable to those of thermal oxide: fixed oxide charge(N$_{ff}$)= 7${\times}10^{10}cm^{-2}$, interface state density(N$_{it}$)=4${\times}10^[10}cm^{-2}eV^{-1}$, and breakdown field > 8MV/cm.

  • PDF

Dry thermal development of negative electron beam resist polystyrene

  • Con, Celal;Abbas, Arwa Saud;Yavuz, Mustafa;Cui, Bo
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • We report dry thermal development of negative resist polystyrene with low molecular weight. When developed on a hotplate at $350^{\circ}C$ for 30 min, polystyrene showed reasonable high contrast and resolution (30 nm half-pitch), but low sensitivity. Resist sensitivity was greatly improved at lower development temperatures, though at the cost of reduced contrast. In addition, we observed the thickness reduction due to thermal development was higher for larger remaining film thickness, implying the thermal development process is not just a surface process and the more volatile chains below the top surface may diffuse to the surface and get evaporated.

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment (DUV와 열의 하이브리드 저온 용액공정에 의해 형성된 Al2O3 게이트 절연막 연구)

  • Jang, Hyun Gyu;Kim, Won Keun;Oh, Min Suk;Kwon, Soon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.286-290
    • /
    • 2020
  • The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.

The Correlation of Thermal Analysis Model using Results of LEO Satellite Optical Payload's Thermal Vacuum Test (저궤도위성 광학탑재체의 열진공시험 결과를 이용한 열해석 모델 보정)

  • Kim, Min-Jae;Huh, Hwan-Il;Kim, Sang-Ho;Chang, Su-Young;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.620-621
    • /
    • 2010
  • Thermal models are made to verify the process that operate in space orbit. In this study, thermal analysis model correlation was performed to satisfy the criteria of correlation. Ground thermal vacuum test results are used for the correlation thermal model in the process of thermal model verification.

  • PDF

Characterization of Oxidized Porous Silicon Film by Complex Process Using RTO (RTO 공정을 이용한 다공질 실리콘막의 저온 산화 및 특성분석)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.560-564
    • /
    • 2003
  • Thick oxide layer was fabricated by anodic reaction and complex oxidation performed by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and a RTO (rapid thermal oxidation) process (105$0^{\circ}C$, 1 min). Electrical characteristics of OPSL (oxidized porous silicon layer) were almost the same as those of thermal silicon dioxide prepared at high temperature. The leakage current through the OPSL of 20${\mu}{\textrm}{m}$ thickness was about 100 - 500 ㎀ in the range 0 V to 50 V. The average value of breakdown field was about 3.9 MV/cm. From the XPS analysis, surface and internal oxide films of OPSL prepared by complex process were confirmed completely oxidized and also the role of RTO process was important for the densification of PSL (porous silicon layer) oxidized at low temperature.

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Development of Rapid Thermal Processor for Large Glass LTPS Production

  • Kim, Hyoung-June;Shin, Dong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.533-536
    • /
    • 2006
  • VIATRON TECHNOLOGIES has developed Field-Enhanced Rapid Thermal Processor (FERTP) system that enables LTPS LCD and AMOLED manufacturers to produce poly-Si films at low cost, high throughput, and high yield. The FE-RTP allows the diverse process options including crystallization, thermal oxidation of gate oxides and fast pre-compactions. The process and equipment compatibility with a-Si TFT lines is able to provide a viable solution to produce poly-Si TFTs using a-Si TFT lines.

  • PDF

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh;Ginting, Dianta;Kim, Gareoung;Ahn, Kyunghan;Rhyee, Jong-Soo
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1534-1539
    • /
    • 2018
  • SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.