Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.4.286

Study of Low Temperature Solution-Processed Al2O3 Gate Insulator by DUV and Thermal Hybrid Treatment  

Jang, Hyun Gyu (Display Research Center, Korea Electronics Technology Institute)
Kim, Won Keun (Display Research Center, Korea Electronics Technology Institute)
Oh, Min Suk (Display Research Center, Korea Electronics Technology Institute)
Kwon, Soon-Hyung (Display Research Center, Korea Electronics Technology Institute)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.4, 2020 , pp. 286-290 More about this Journal
Abstract
The formation of inorganic thin films in low-temperature solution processes is necessary for a wide range of commercial applications of organic electronic devices. Aluminum oxide thin films can be utilized as barrier films that prevent the deterioration of an electronic device due to moisture and oxygen in the air. In addition, they can be used as the gate insulating layers of a thin film transistor. In this study, aluminum oxide thin film were formed using two methods simultaneously, a thermal process and the DUV process, and the properties of the thin films were compared. The result of converting aluminum nitrate hydrate to aluminum oxide through a hybrid process using a thermal treatment and DUV was confirmed by XPS measurements. A film-based a-IGZO TFT was fabricated using the formed inorganic thin film as a gate insulating film to confirm its properties.
Keywords
TFT; Hybrid process; DUV; Thermal treatment; Barrier; Insulating layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. M. Yun, J. Jang, S. Nam, L. H. Kim, S. J. Seo, and C. E. Park, ACS Appl. Mater. Interfaces, 4, 3247 (2012). [DOI: https://doi.org/10.1021/am300600s]   DOI
2 N. Liu, J. Baek, S. M. Kim, S. Hong, Y. K. Hong, Y. S. Kim, H. S. Kim, S. Kim, and J. Park, ACS Appl. Mater. Interfaces, 9, 42943 (2017). [DOI: https://doi.org/10.1021/acsami.7b16670]   DOI
3 J. S. Park, J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 92, 072104 (2008). [DOI: https://doi.org/10.1063/1.2838380]   DOI
4 E. Chong, K. C. Jo, and S. Y. Lee, Appl. Phys. Lett., 96, 152102 (2010). [DOI: https://doi.org/10.1063/1.3387819]   DOI
5 P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr, Appl. Phys. Lett., 82, 1117 (2003). [DOI: https://doi.org/10.1063/1.1553997]   DOI
6 J. Jin, J. J. Lee, B. S. Bae, S. J. Park, S. Yoo, and K. H. Jung, Org. Electron., 13, 53 (2012). [DOI: https://doi.org/10.1016/j.orgel.2011.09.008]   DOI
7 Y. H. Kim, J. S. Heo, T. H. Kim. S. Park, M. H. Yoon, J. Kim, M. S. Oh, G. R. Yi, Y. Y. Noh, and S. K. Park, Nature, 489, 128 (2012). [DOI: https://doi.org/10.1038/nature11434]   DOI
8 S. Lee and Y. S. Song, J. Semicond, 1, 16 (2017).
9 K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, and P. Atanassov, Chem. Commun., 49, 2539 (2013). [DOI: https://doi.org/10.1039/C3CC40324F]   DOI
10 S. Park, K. H. Kim, J. W. Jo, S. Sung, K. T. Kim, W. J. Lee, J. Kim, H. J. Kim, G. R. Yi, Y. H. Kim, M. H. Yoon, and S. K. Park, Adv. Funct. Mater., 25, 2807 (2015). [DOI: https://doi.org/10.1002/adfm.201500545]   DOI
11 P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, and S. M. George, Appl. Phys. Lett., 89, 031915 (2006). [DOI: https://doi.org/10.1063/1.2221912]   DOI
12 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI