Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.09.011

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds  

Lin, Chan-Chieh (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
Ginting, Dianta (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
Kim, Gareoung (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
Ahn, Kyunghan (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
Rhyee, Jong-Soo (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
Abstract
SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.
Keywords
Thermoelectric; ZT; SnSe; Mobility; Low thermal conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B 92 (2015) 115202.   DOI
2 A.J. Hong, L. Li, H.X. Zhu, Z.B. Yan, J.M. Liu, Z.F. Ren, J. Mater. Chem. A 3 (2015) 13365-13370.   DOI
3 K. Kutorasinski, B. Wiendlocha, S. Kaprzyk, J. Tobola, Phys. Rev. B 91 (2015) 205201.   DOI
4 G. Shi, E. Kioupakis, J. Appl. Phys. 117 (2015) 065103.   DOI
5 Y. Suzuki, H. Nakamura, Phys. Chem. Chem. Phys. 17 (2015) 29647-29654.   DOI
6 K. Tyagi, B. Gahtori, S. Bathula, N.K. Singh, S. Bishnoi, S. Auluck, A.K. Srivastava, A. Dhar, RSC Adv. 6 (2016) 11562-11569.   DOI
7 J. Yang, G. Zhang, G. Yang, C. Wang, Y.X. Wang, J. Alloys Compd. 644 (2015) 615-620.   DOI
8 J. Carrete, N. Mingo, S. Curtarolo, Appl. Phys. Lett. 105 (2014) 101907.   DOI
9 G. Ding, G. Gao, K. Yao, Sci. Rep. 5 (2015) 9567.   DOI
10 L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, Science 351 (2016) 141-144.   DOI
11 K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 9 (2016) 454-460.   DOI
12 S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Appl. Phys. Lett. 104 (2014) 212105.   DOI
13 Y. Li, X. Shi, D. Ren, J. Chen, L. Chen, Energies 8 (2015) 6275-6285.   DOI
14 C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2 (2014) 11171-11176.   DOI
15 J.G. Yu, A. Yue, O. Stafsudd, J. Cryst. Growth 54 (1981) 248-252.   DOI
16 J. Wasscher, W. Albers, C. Haas, Solid State Electron. 6 (1963) 261-264.   DOI
17 L.E. Bell, Science 321 (2008) 1457-1461.   DOI
18 L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377.   DOI
19 H. Zhang, D.V. Talapin, Angew. Chem. Int. Ed. 53 (2014) 9126-9127.   DOI
20 X. Guan, P. Lu, L. Wu, L. Han, G. Liu, Y. Song, S. Wang, J. Alloys Compd. 643 (2015) 116-120.   DOI
21 Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 134 (2012) 10031-10038.   DOI
22 E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4 (2016) 1848-1854.   DOI
23 H.-Q. Leng, M. Zhou, J. Zhao, Y.-M. Han, L.-F. Li, RSC Adv. 6 (2016) 9112-9116.   DOI
24 Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. Ren, Adv. Energy Mater. 5 (2015) 1500360.   DOI
25 C.-C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.-S. Rhyee, Chem. Mater. 29 (2017) 5344-5352.   DOI
26 D. Ginting, C.-C. Lin, L. Rathnam, B.-K. Yu, S.-J. Kim, R. Al rahal Al Orabi, J.- S. Rhyee, RSC Adv. 6 (2017) 62958-62967.
27 Y. Li, B. He, J.P. Heremans, J.-C. Zhao, J. Alloys Compd. 669 (2016) 224-231.   DOI
28 A.F. May, G.J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures, Materials, Preparation, and Characterization in Thermoelectrics, CRC Press, New York, 2012, pp. 1-18.
29 H. Leng, M. Zhou, J. Zhao, Y. Han, L. Li, J. Electron. Mater. 45 (2015) 527-534.