• Title/Summary/Keyword: low power transmitter

Search Result 184, Processing Time 0.029 seconds

Implementation of Readout IC for $8\times8$ UV-FPA Detector ($8\times8$ UV-PPA 검출기용 Readout IC의 설계 및 제작)

  • Kim, Tae-Min;Shin, Gun-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.503-510
    • /
    • 2006
  • Readout circuit is to convert signal occurred in a defector into suitable signal for image signal processing. In general, it has to possess functions of impedance matching with perception element, amplification, noise reduction and cell selection. It also should satisfies conditions of low-power, low-noise, linearity, uniformity, dynamic range, excellent frequency-response characteristic, and so on. The technical issues in developing image processing equipment for focal plane way (FPA) can be categorized as follow: First, ultraviolet (UV) my detector material and fine processing technology. Second, ReadOut IC (ROIC) design technology to process electric signal from detector. Last, package technology for hybrid bonding between detector and ROIC. ROIC enables intelligence and multi-function of image equipment. It is a core component for high value added commercialization ultimately. Especially, in development of high-resolution image equipment ROIC, it is necessary that high-integrated and low-power circuit design technology satisfied with design specifications such as detector characteristic, signal dynamic range, readout rate, noise characteristic, ceil pitch, power consumption and so on. In this paper, we implemented a $8\times8$ FPA prototype ROIC for reduction of period and cost. We tested unit block and overall functions of designed $8\times8$ FPA ROIC. Also, we manufactured ROIC control and image boards, and then were able to verify operation of ROIC by confirming detected image from PC's monitor through UART(Universal Asynchronous Receiver Transmitter) communication.

Low Complexity Discrete Hartley Transform Precoded OFDM System over Frequency-Selective Fading Channel

  • Ouyang, Xing;Jin, Jiyu;Jin, Guiyue;Li, Peng
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.32-42
    • /
    • 2015
  • Orthogonal frequency-division multiplexing (OFDM) suffers from spectral nulls of frequency-selective fading channels. Linear precoded (LP-) OFDM is an effective method that guarantees symbol detectability by spreading the frequency-domain symbols over the whole spectrum. This paper proposes a computationally efficient and low-cost implementation for discrete Hartley transform (DHT) precoded OFDM systems. Compared to conventional DHT-OFDM systems, at the transmitter, both the DHT and the inverse discrete Fourier transform are replaced by a one-level butterfly structure that involves only one addition per symbol to generate the time-domain DHT-OFDM signal. At the receiver, only the DHT is required to recover the distorted signal with a single-tap equalizer in contrast to both the DHT and the DFT in the conventional DHT-OFDM. Theoretical analysis of DHT-OFDM with linear equalizers is presented and confirmed by numerical simulation. It is shown that the proposed DHT-OFDM system achieves similar performance when compared to other LP-OFDMs but exhibits a lower implementation complexity and peak-to-average power ratio.

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.

AC/DC flyback converter without photo-coupler having Low standby power and precise control of the output voltage (저 대기전력 및 정확한 출력전압 제어가 가능한 포토커플러 없는 AC/DC 플라이백 컨버터)

  • Jo, Kang-Ta;Heo, Tae-Won;Choi, Heung-Gyun;Kim, Hugh;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.173-174
    • /
    • 2014
  • 본 논문에서는 저 대기전력 구현이 가능하며 정확한 출력전압 제어가 가능한 SSR(Secondary Side Regulator) 플라이백 컨버터를 제안하였다. 제안 SSR 플라이백 컨버터는 2차 측에 control IC를 사용하여 별도의 제어기(TL431) 및 포토커플러를 제거하여 구조가 간단하고 대기모드 시 TL431의 바이어스 전류에 의한 전력소모를 줄일 수 있으므로 대기전력을 최소화 할 수 있으며 출력전압을 직접 검출하여 정확하게 출력을 제어할 수 있다. 한편 1차 측의 위치한 게이트 구동을 위해 절연된 1-2차 측간 신호를 전송하는 PET(Pulse Edge Transmitter)를 제안하였으며 제안 방식은 IC로의 직접화가 매우 용이하여 1-2차 측 IC와 제안 PET를 one-chip화 할 수 있다. 제안 회로의 타당성 검증을 위해 10W급 Adaptor의 시작품을 제작하였고, 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

  • PDF

Optimal user selection and power allocation for revenue maximization in non-orthogonal multiple access systems

  • Pazhayakandathil, Sindhu;Sukumaran, Deepak Kayiparambil;Koodamannu, Abdul Hameed
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.626-636
    • /
    • 2019
  • A novel algorithm for joint user selection and optimal power allocation for Stackelberg game-based revenue maximization in a downlink non-orthogonal multiple access (NOMA) network is proposed in this study. The condition for the existence of optimal solution is derived by assuming perfect channel state information (CSI) at the transmitter. The Lagrange multiplier method is used to convert the revenue maximization problem into a set of quadratic equations that are reduced to a regular chain of expressions. The optimal solution is obtained via a univariate iterative procedure. A simple algorithm for joint optimal user selection and power calculation is presented and exhibits extremely low complexity. Furthermore, an outage analysis is presented to evaluate the performance degradation when perfect CSI is not available. The simulation results indicate that at 5-dB signal-to-noise ratio (SNR), revenue of the base station improves by at least 15.2% for the proposed algorithm when compared to suboptimal schemes. Other performance metrics of NOMA, such as individual user-rates, fairness index, and outage probability, approach near-optimal values at moderate to high SNRs.

Analysis of Delay time by Adjusting of Check Interval in Asynchronous Wireless Sensor Network with Low Power (저전력 비동기 무선센서네트워크에서 체크인터벌 조절에 따른 지연시간 분석)

  • Yoon, Mi-Hee;Kim, Dongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.75-80
    • /
    • 2020
  • There are so many low power MAC protocols for wireless sensor network. IEEE802.15.4 among them has disadvantage of a large power consumption for synchronization. To save power consumption it use the superframe operation alternating sleep mode and awake mode. But latency is longer result from superframe operation. B-MAC can have shorter latency according to check interval. But transmitter consumes more power because of long preamble. And receiver is suffering from overhearing. In this paper, we use the adaptive check interval scheme[1] of B-MAC for enhancing the power consumption. Its maximum throughput and minimum delay is evaluated by comparing the proposed scheme with a typical single channel IEEE802.15.4.

Design of Power Detection Block for Wireless Communication Transmitter Systems (무선통신 송신시스템용 전력검출부 설계)

  • Hwang, Mun-Su;Koo, Jae-Jin;Ahn, Dal;Lim, Jong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1000-1006
    • /
    • 2007
  • This paper presents a power detector circuit which monitors the transmitting power for the application in CDMA cell phones. The proposed power detector are composed of coupler for coupling output power and detector fur monitoring output power. The designed coupler has low loss characteristic because it adopts the stripline structure which consists of two ground planes at both sides of signal plane. The design frequency is 824-849MHz which is the Tx band fur CDMA mobile terminal, and the coupling factor of the stripline coupler is -20dB. A schottky barrier diode is adopted for detector design because of its high speed operation with minimized loss. The required impedance matching is performed to improve the linearity and sensitivity of output voltage at relatively low detector input level where the nonlinear characteristic of diode exists. The package parasitics as well as intrinsic diode model are considered for simulation of the detector. The predicted performances agree well with the measured results.

  • PDF

A 65-nm CMOS Low-Power Baseband Circuit with 7-Channel Cutoff Frequency and 40-dB Gain Range for LTE-Advanced SAW-Less RF Transmitters (LTE-Advanced SAW-Less 송신기용 7개 채널 차단 주파수 및 40-dB 이득범위를 제공하는 65-nm CMOS 저전력 기저대역회로 설계에 관한 연구)

  • Kim, Sung-Hwan;Kim, Chang-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.678-684
    • /
    • 2013
  • This paper describes a low-power baseband circuit for SAW-less LTE-Advanced transmitters. The proposed transmitter baseband circuit consists of a 2nd-order Tow-Thomas type active RC-LPF and a 1st-order passive RC LPF. It can provide a 7 multi-channel cut-off frequencies and wide gain control range of -41 dB ~ 0 dB with a 1-dB step. The proposed 2nd-order active RC-LPF adopts an op-amp in which three other sub-op amps are in parallel connected to reduce DC current for different cutoff frequency. In addition, each sub-op amp adopts both Miller and feed-forward phase compensation method to achieve an UGBW of more than 1-GHz with a small DC power consumption. The proposed baseband circuit is implemented in 65-nm CMOS technology, consuming DC power from 6.3 mW to 24.1 mW from a 1.2V supply voltage for each different cut-off frequency.

A Fully Synthesizable Bluetooth Baseband Module for a System-on-a-Chip

  • Chun, Ik-Jae;Kim, Bo-Gwan;Park, In-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.328-336
    • /
    • 2003
  • Bluetooth is a specification for short-range wireless communication using the 2.4 GHz ISM band. It emphasizes low complexity, low power, and low cost. This paper describes an area-efficient digital baseband module for wireless technology. For area-efficiency, we carefully consider hardware and software partitioning. We implement complex control tasks of the Bluetooth baseband layer protocols in software running on an embedded microcontroller. Hardware-efficient functions, such as low-level bitstream link control; host controller interfaces (HCIs), such as universal asynchronous receiver transmitter (UART) and universal serial bus (USB)interfaces; and audio Codec are performed by dedicated hardware blocks. Furthermore, we eliminate FIFOs for data buffering between hardware functional units. The design is done using fully synthesizable Verilog HDL to enhance the portability between process technologies so that our module can be easily integrated as an intellectual property core no system-on-a-chip (SoC) ASICs. A field programmable gate array (FPGA) prototype of this module was tested for functional verification and realtime operation of file and bitstream transfers between PCs. The module was fabricated in a $0.25-{\mu}m$ CMOS technology, the core size of which was only 2.79 $mm{\times}2.80mm$.

  • PDF

A Study on the AM/FM Digital Radio for Practical Use Based on DRM and DRM+ (DRM과 DRM+ 기반의 AM/FM 디지털라디오 활용 연구)

  • Park, Sung-Kyu;Park, Goo-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.990-1003
    • /
    • 2012
  • In this paper, the possibility and necessity of the digital broadcasting propulsion in AM and FM is presented based on DRM and DRM+ transmission modes, They are the members of series technological family in digital radio development. As the frequency utilization, the application of DRM+ is flexible in any mode such as IN-BAND or OUT-OF-BAND. When the digital audio broadcasting is planned at LOW-VHF bandwidth such as TV channel No.5 and NO.6 being adjacent to FM band and OUT-Of-BAND DRM+ technology is applied, there is no collision and jamming. Particularly, in the IN-BAND Hybrid mode, it is mentioned that there was the difficulty problem for multiple SFN transmitters uses. Not like the IN-BAND mode the OUT-OF-BAND mode lets multiple transmitters, because neighbor transmitters do not interfere each other. Digital transmitter can be combined with the existing FM transmitter. The intensity of power and size of area can be easily determined according to local broadcasters' condition. And the OUT-OF-BAND mode is advantageous for AM/FM integration in digital radio receiver manufacturing, which makes the conversion schedule much shorter.