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Bluetooth is a specification for short-range wireless 
communication using the 2.4 GHz ISM band. It emphasizes 
low complexity, low power, and low cost. This paper 
describes an area-efficient digital baseband module for 
wireless technology. 

For area-efficiency, we carefully consider hardware and 
software partitioning. We implement complex control tasks 
of the Bluetooth baseband layer protocols in software 
running on an embedded microcontroller. Hardware-
efficient functions, such as low-level bitstream link control; 
host controller interfaces (HCIs), such as universal 
asynchronous receiver transmitter (UART) and universal 
serial bus (USB) interfaces; and audio Codec are performed 
by dedicated hardware blocks. Furthermore, we eliminate 
FIFOs for data buffering between hardware functional 
units. The design is done using fully synthesizable Verilog 
HDL to enhance the portability between process 
technologies so that our module can be easily integrated as 
an intellectual property core on system-on-a-chip (SoC) 
ASICs. A field programmable gate array (FPGA) prototype 
of this module was tested for functional verification and 
realtime operation of file and bitstream transfers between 
PCs. The module was fabricated in a 0.25-µm CMOS 
technology, the core size of which was only 2.79 mm×2.80 
mm. 
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I. Introduction 

Due to progress in related technologies in the past decade, 
wireless telecommunication technology has been applied to 
telephony services, medical instruments, home electronics, and 
other applications. It has been replacing existing wired 
applications for the increased convenience of customers and 
for opening new applications. Wireless communication using 
the 2.4 GHz ISM band in particular is forecasted to increase 
explosively [1] because the band is used without license. 

Bluetooth, operating in the ISM band, is a specification [2] 
for short-range wireless communication. It was developed in 
1999 to substitute cables connecting portable or desktop 
devices and to build low-cost wireless networks for mobile and 
portable devices. It emphasizes low complexity, low power 
consumption, and low cost [3]-[5]. It is crucial to implement 
digital baseband processing in a cheap, small module and 
desirable to integrate the whole system on a chip to achieve the 
power and cost targets [5]. Baseband modules as reusable 
intellectual property (IP) cores [6] enable those higher levels of 
integration through system-on-a-chip (SoC) design and reduce 
time-to-market. 

The Bluetooth baseband module is in general responsible for 
carrying out link control and link management tasks. The 
detailed tasks of the module vary significantly depending on 
applications. For the simplest applications, such as wireless 
headsets and cellular phone add-on dangles, the entire 
application as well as a basic part of the baseband layer 
protocols may be implemented in software on the baseband 
processor. For more complex applications expecting high-
speed full baseband operation and host controller interface 
(HCI), most of the baseband protocols would be implemented 
in hardware while more complex upper layer protocols and 
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application software are processed on a host processor. 
Allocating more functions to hardware from software can reduce 
the load/interrupt frequency, but the trade-off could produce a 
significant increase in gate count and loss of connection 
flexibility with a resultant poor interoperability performance. The 
baseband module should therefore be very flexible so as not to 
waste the processing power and hardware resource. 

This paper describes an area-efficient digital baseband 
module that is suitable for use as an IP core on SoC ASICs. To 
gain more flexibility, we used a programmable embedded 
microcontroller optimized to our Bluetooth core. The 
programmable embedded microcontroller performs as many 
tasks for channel control and interface as possible. To reduce 
the size, we merged the data-transfer FIFO buffers distributed 
in functional units, such as USB, UART, link controller, and 
audio Codec, into the internal SRAM. The functional units 
access the SRAM by direct memory access (DMA) through a 
memory management unit (MMU). The module is made up of 
a logic part of only 85,000 gates and a 4 kB single-port SRAM. 
It conforms to the latest version of the Bluetooth (version 1.1) 
[2]. In addition, it supports firmware programming capability. 

The remainder of this paper is organized as follows. Section 
II gives the overall architecture of our Bluetooth baseband 
module. In sections III and IV, we present the structure and 
design of a microcontroller subsystem and a link controller. 
Section V describes the host controller interfaces and section 
VI an audio Codec for the Bluetooth module. Section VII 
summarizes our experiments and results. Finally, we present 
the conclusions of the paper. 
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Fig. 1. Overall architecture of the Bluetooth baseband module.  

II. Overall Architecture of the Baseband Module 

A Bluetooth module generally consists of an RF module to 
generate wireless channels for data transmission and a 
baseband module to execute link management tasks, link 
control tasks, and bitstream processing. In the design of the 
Bluetooth baseband module, the link manager and link 
controller are very important function blocks. The link 
manager performs link management tasks, translating 
commands and data into operations at the link controller and 
 

 

Fig. 2. The block diagram of the link controller. 
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controlling link establishment, link destruction, and link 
configuration among Bluetooth devices. This part is generally 
performed by software running on the embedded 
microprocessor. The link controller carries out the link control 
protocol, which is responsible for the mechanics of maintaining 
a link once established, and performs the bit-intensive and 
time-critical part [5]. This part is generally implemented in 
dedicated hardware. 

Our baseband module consists of five major functional units: 
a microcontroller subsystem, a link controller, a universal 
asynchronous receiver transmitter (UART), a universal serial 
bus (USB), and an audio Codec. Figure 1 shows the overall 
architecture of the Bluetooth baseband module. The module is 
designed so that the microcontroller can easily control each of 
the peripherals through internal registers and memory mapped 
I/O. 

The microcontroller subsystem consists of a microcontroller, 
an MMU, and an SRAM (Fig. 1). It manages the other units 
and executes the Bluetooth link manager, host controller 
interface, and some part of the link control protocol software. 
The link controller performs encoding and decoding of 
Bluetooth bitstream data and low-level timing control. The 
UART and USB are HCI physical transport layers [2] and 
operate alternatively. The audio Codec for voice data supports 
all three of the Bluetooth audio coding methods: A-law, µ-law, 
and CVSD. 

The base interface of the module complies with the one of 
the ARM7TDMI controller [7], which is commonly used in 
Bluetooth systems. As shown in Fig. 2, an RF interface 
connects the baseband module with an RF module. The RF 
interface consists of a serial interface, a data interface, and an 
in/out interface. It was designed on the basis of Ericsson’s RF 
module interface [8]. However, for compatibility with other RF 
chip-solutions [9], [10], the data interface and the in/out 
interface were designed considering both common interface 
signals and unique interface signals each commercial RF chip 
has. The baseband module controls the RF modules through 
the serial interface based on the IEEE standard 1149.1 
boundary scan architecture. The timing of the RF interface 
signals for bitstream data transmission is controlled by the 
LM/LC control register of the link controller in Fig. 2. 
Therefore, the baseband module can be connected directly to 
various RF modules via the RF interface. 

Several baseband hardware modules have been reported 
either as a part of a system or as an IP [11]-[14]. Their size, 
however, is large either because they have a distributed buffer 
(the total dedicated buffer size is about 585 bytes) in each 
module, namely, the baseband, USB, audio Codec, and UART 
[14], or because massive hardware is adopted to perform 
almost all the tasks while the embedded microcontroller is 

idling for most of the time (the gate count of the baseband IP is 
280,000 gates in 0.18-µm technology) [11] or because they use 
area-occupying dual-port internal SRAMs [12]. However, 
since our module has the minimum number of dedicated 
buffers, supports transmission of data via DMA, and consists 
of several modules designed as IP blocks, our baseband core is 
a simple, small, and portable Bluetooth core that is suitable for 
use as an IP core. 

The main input clock is 48 MHz. The USB unit runs at the 
48 MHz external clock in order to gain synchronization with a 
12 MHz Rx bitstream. The other units use a 12 MHz clock that 
is generated by dividing the 48 MHz by four to save power 
consumption, but the interface with the radio module operates 
by the other clocks. The other subclocks, 3.2 kHz, 4 MHz, and 
1 MHz clocks, are used in relation to the RF interface between 
the link controller and an external RF module. The 3.2 kHz is 
provided from the RF module and used for timing 
synchronization to the link connection. The 4 MHz frequency 
is used for the serial interface between the link controller and 
the RF module. Transmission is synchronized to the 1 MHz 
provided by the RF module, and reception is synchronized to 
the 1 MHz clock extracted from the phase-locked loop block of 
the RF interface block in the link controller. 

III. Microcontroller Subsystem 

The microcontroller in Fig. 1 controls the other units via a 
memory-mapped I/O interface and interrupts. The other 
important task of the microcontroller is to run the Bluetooth 
link manager, the HCI, and a part of the link control protocol 
software. The microcontroller performs the complex part of the 
link control protocol that requires flexibility, such as decision 
making on received baseband packets and context switching 
between links, while the link controller performs the bit-
intensive and time-critical part. 

The MMU in Fig. 1 manages the memory interface and 
memory-mapped I/O interface of the microcontroller. One of 
the most important tasks of the MMU is DMA of peripheral 
units. If the link controller and HCI units have their own data-
transfer buffers as in reported designs [14], the buffers will 
dominate the size of those units when implemented with flip-
flops and impose a sizable burden on the microcontroller to 
move the data. To solve this problem, we merged the 
distributed large buffers into the internal SRAM, which already 
existed for the program and data of the microcontroller, which 
resulted in a great area reduction. Compared to the distributed 
buffer-based architecture, the logic gate count in functional 
units and the microcontroller without SRAM was reduced 
from 132,000 to 85,000, a 35.7% reduction. When 4 kB of on-
chip SRAM was counted together, the net area reduction was 
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27.4%. A 4 kB SRAM was sufficient to run a whole simple 
application program on the microcontroller, whereas the 
memory intensive logical link control and adaptation protocol 
segmentation and reassembly of complex applications may be 
performed on a host. 

In the memory access, considering the load of the 
microcontroller, the peripheral has a low load. Therefore, 
although the microcontroller has priority over the other 
peripherals, a processing delay or transmitting and receiving 
error on the peripheral’s operation is not generated. This low 
gate count is made possible by the DMA architecture. This 
architecture simplifies the SoC design and nearly eliminates 
buffer requirements. 

For this Bluetooth baseband module, we used a clone of the 
Advanced RISC Machines ARM7TDMI core as the 
microcontroller. We used a single-port on-chip SRAM, which 
was half as large as a dual-port SRAM of the same capacity. As 
the ARM7 architecture does not access the RAM while 
fetching instructions from the flash memory, DMA can be 
easily implemented with a small single-port SRAM. The 
instruction fetch and the fixed data load of the ARM processor 
were obtained from flash memory through a 16-bit interface. In 
addition, while a peripheral accessed the SRAM (data 
memory), the processor could fetch instructions from flash 
memory. 

The MMU also provides flash memory programming 
capability through a UART interface. At power-up, a dedicated 
pin is used to select the loading of a new program from the 
UART interface. 

IV. Link Controller 

The link controller is a part of the baseband module for 
processing the bit-intensive baseband protocol functions, i.e., 
Bluetooth bitstream processing and encryption, which are 
power-efficient if implemented in hardware. In addition, the 
most time-critical portions of the link control task, such as low-
level timing control and frequency hop calculation, are 
processed by the link controller. The link controller also exactly 
transmits the processing information about the link connection, 
such as Tx/Rx timing, interrupt, and event information, to the 
link manager. The link controller conforms to the latest version 
of the Bluetooth specification (version 1.1) and supports all of 
the six asynchronous connectionless (ACL), four synchronous 
connection-oriented (SCO), and four common packet types. 
Figure 2 shows a block diagram of the Bluetooth link controller. 

As the figure depicts, the link controller has a baseband 
function unit. The baseband function unit is responsible for the 
most important tasks of the link controller. The tasks are to 
perform bit-intensive baseband protocol and the time-critical 

portion. A Tx/Rx control block and a baseband unit control 
block control the baseband function unit by generating Tx/Rx 
timing and packet control signals. The baseband function unit 
implemented by hardware processes the most time-critical 
portion of the link control tasks. For this, the baseband function 
unit has been designed to perform as many hardware-efficient 
tasks as possible: low-level timing control, frequency hop 
calculation, encryption, decryption, access code generation and 
detection, correlation, Bluetooth clock control, etc. 

The microcontroller can manage all of the link controller 
functions, for instance bitstream processing, interrupt, and 
encryption, by setting the internal registers of the link controller. 
When a critical event occurs in relation to transmission or 
reception of packets, the link controller calls the 
microcontroller interrupt, and then the event information is 
transferred to the microcontroller via an interrupt register in the 
LM/LC control register of the link controller. The RF interface 
consists of a serial interface, a data interface, and an in/out 
interface. The data and in/out interfaces are responsible for 
connection for packet transmission from the link controller to 
an RF module. The serial interface controls the RF module. 
The RF interface also has a digital phase-locked loop logic for 
Rx synchronization and is responsible for connection with an 
RF module. For the detection of a designated packet of data, 
the link controller has to periodically perform synchronization 
with a syncword. For this, a correlator using a 64-bit syncword 
is designed in the baseband function unit. 

Before transmission through the RF channel, a bitstream data 
path block is essential for protecting the data against an 
imperfect channel. The encryption/decryption block deals with 
the security of information. Encryption is used as a safeguard 
against eavesdropping. The bitstream data path block consists 
of several channel coding blocks, such as HEC, CRC, Whiten, 
and FEC. The bitstream data path block is also designed so that 
data can continuously stream through the channel coding 
blocks without any bitstream buffers between them, which 
results in an area reduction. To achieve the continuous stream, 
in the bitstream data path block shown in Fig. 3, we designed 
the sequencers that control the timing of each function block, 
such as HEC, CRC, Whiten, Encryption, and FEC. The 
sequencers can be programmed according to the different 
packet types and carry out the required processing functions 
without further microcontroller intervention. In addition, we 
heavily apply a clock-gating scheme in order to achieve low 
power consumption. Figure 3 shows the data transmission and 
reception flow with the sequencer logic in the bitstream data 
path block. 

Rx processing is different from Tx processing. Because we 
do not know the packet type and length in advance, we must 
recognize such information during reception. An Rx block 
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Fig. 3. Bitstream flow in the bitstream data path block. 
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therefore requires a block that analyzes the form of received 
data. To perform this task, we designed the packet header 
analysis block and the payload header analysis block in the 
bitstream data path block in Fig. 3. The packet header 
analysis block first analyzes the control information 
associated with the packet, such as the address of the 
Bluetooth slave device for which the packet is intended and 
information on the packet type, and then the payload header 
analysis block analyzes the logical link control information, 
such as information on the length of the message in the 
packet. 

The clock control is one of the most important parts in the 
design of a Bluetooth unit. When two Bluetooth units are to 
establish a communication channel, the clock (slave clock) 
and the phase of the slave device must be synchronized to the 
clock (master clock) of the master device. For this, the 
baseband function unit uses a 3.2 kHz clock and counts it 
with a 28 bit counter. The CLK offset control logic in Fig. 2 
controls three Bluetooth-specified clocks: CLKN, CLKE, 
and CLK [2], [3], [5]. CLKN, the native clock, is used as the 
basis of the other clocks. CLKE and CLK, which represent 
the estimated clock and master clock, respectively, are 
obtained by adding an offset to CLKN. The Bluetooth clocks 
feed the hop selection logic that generates a hopping 
sequence for the 79-hop system. 

V. Host Controller Interfaces 

For data transmission and reception between the Bluetooth 
baseband module and a host, such as a PC and mobile or 
portable devices, two serial interfaces, UART and USB, are 

provided. The serial interfaces send and receive bit sequences 
on the status of these bits to and from another unit that 
processes the bit sequences [15]. The UART and USB units 
constitute the physical layer of the Bluetooth HCI. Each unit 
has a special function for Bluetooth data transfer. 

1. UART 

The Bluetooth HCI UART transport layer is the most 
general serial interface between the host and the Bluetooth 
device. The UART unit is designed on the basis of industry-
standard 16C450. It supports baud rates from 300 bps to 1.5 
Mbps by a numerical controlled oscillator, and the default bit 
rate is 57.6 kbps. It also provides firmware-programming 
capability to meet a modified higher protocol. 

The UART unit consists of a Tx unit, an Rx unit, an 
interrupt block, a flow control block, and an interface block 
(Fig. 4). The Tx unit converts the parallel data into a serial 
form to transmit them to the host. The data from the DMA 
interface are stored in buffer registers, converted into a serial 
form at the shift register, and transmitted. The Rx unit 
processes the serial data received from RXD input. Unlike an 
Rx unit in a general UART, this unit includes a data check 
block that detects the start bit of data and a packet decoder 
that finds the packet type and length of the received HCI 
packets to help HCI processing of the microcontroller. 

2. USB 

The USB unit complies with USB Specification 1.1 [16] 
and the HCI USB transport layer specification of Bluetooth 
v1.1 [2] and supports a full-speed 12 Mbps interface. 
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Fig. 4. The block diagram of the UART unit. 
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The USB controller unit consists of a transceiver interface, 
serial interface engine, protocol layer handler, 
registers/endpoint manager, and parallel interface (Fig. 5). 
The transceiver interface block generates output enable 
signals for the transceiver to drive the signal line when 
sending data, and it contains an Rx clock recovery circuit. 

 

Fig. 5. The block diagram of the USB unit. 
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The serial interface engine encodes, decodes, and samples 
signals at the recovered clock. The protocol layer handler 
works as a transaction sequencer, which performs the control 
to send or receive expected packets. If it receives an 
unexpected packet, it will ignore the packet. When it receives 
an expected error-free packet, it stores the packet in the 
corresponding endpoint FIFO via DMA and writes related 
information to registers. The parallel interface and interrupt 
are provided for data exchange with memory. The different 
types of HCI packets are mapped onto different USB 
endpoints according to the Bluetooth specification [2]. 

VI. Audio Codec 

A major application for the Bluetooth is as a carrier of 
audio information. The audio data are carried via SCO 
channels and through the use of several coding schemes. Our 

 

Fig. 6. The block diagram of the audio CODEC. 
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module supports direct PCM connection by the baseband 
audio Codec. 

The Bluetooth specifies three audio coding techniques: log 
PCM coding using either A-law or µ-law [17] and continuous 
variable slope delta modulation (CVSD) [2], [18]. Since the 
table lookup of the log PCM and the low-pass filtering 
necessary in CVSD to avoid aliasing are appropriate for 
hardware implementation, we implemented all three coding 
methods in a hardware audio Codec and designed the 
external interface based on a general commercial PCM chip. 
Figure 6 shows the hardware implementation. In simple 
audio applications, the audio Codec can access voice data 
without using an HCI. Its interface is designed to pass 8- to 
16-bit decoded linear PCM signals. For PC applications, a 
coded audio bitstream can also be transmitted via SCO data 
packets through USB or UART. 

In the Bluetooth specification, the sampling frequencies for 
log PCM and CVSD are not the same: 8 kHz for log PCM 
and 64 kHz for CVSD. We configured the PCM interface of 
the audio subsystem to operate at 8 kHz and implemented 
interpolation with linear interpolation and decimation with 
low-pass filtering for the CVSD block in the Codec engine 
(Fig. 6). 

The audio Codec is so small that it requires only 5,000 
gates, where the 5-tap elliptical IIR low-pass filter occupies 
half of the entire unit. 

VII. Performance Evaluation and Implementation 

We moved the dedicated buffer blocks in the Bluetooth 
baseband module into the SRAM and adopted a DMA 
architecture. However, these operations may induce 
performance degradation in running an application and 
influence data transfer in the baseband module. Therefore, the 
performance degradation of the baseband module due to 
removing dedicated buffer blocks should be carefully 
analyzed to meet the performance specification. According to 
[5], the CPU performance required for the baseband layer 
(link controller, link manager, and HCI) is about 10 to 15 
million instructions per second (MIPS). However, this is not 
the optimum value, and there is a trade-off between the gate 
count and CPU performance. Adding more functions to 
hardware can reduce the CPU performance. Figures 2 and 3 
show our solution for the trade-off. The operating clock is 12 
MHz except for the USB unit, the unit of data transfer among 
peripherals of the baseband module is 8 bits, and the MMU 
takes 2 cycles for DMA of 8 bits. When the microcontroller 
does not request RAM, DMA is started, and if the 
microcontroller request is asserted during the DMA operation, 
DMA is interrupted. In addition, in the case of a continuous 

stack operation (stack read/write) in the microcontroller, the 
MMU stops the stack operation and starts the DMA operation 
in order to prevent starvation. The following is the equation 
for CPU performance degradation (PDCPU) by the DMA in a 
memory operation: 

).21(
)(

StackRAM

AudioLCUSBCPU

PP
TITITIPD
×+××

++=
 

Here, the terms TIUSB, TILC, and TIAudio are the numbers of 
the direct memory access per clock cycle of each peripheral. 
The constant 1 means 1 cycle stall when the microcontroller 
accesses the RAM. The constant 2 means 2 cycles stall when 
the microcontroller executes a stack operation. The term 
PRAM is the frequency of memory access for the total cycle, 
and PStack is the frequency of the stack operation for the total 
cycle. 

• Overall performance 
This is the common case for data transmission and 

reception. In this case, the USB and the link controller have a 
1 Mbps transfer rate (1 DMA per 96 cycles), and the audio 
Codec has a 128 kbps transfer rate (1 DMA per 750 cycles). 
The memory access is below 10% of the total cycle, and the 
stack operation is below 1% of the total cycle. Therefore, the 
CPU performance degradation by the DMA in the memory 
operation is 0.27%. 

• Worst-case performance 

In this case, the USB and the link controller have a 12 Mbps 
(1 DMA per 8 cycles) and 1 Mbps (1 DMA per 96 cycles) 
transfer rate, respectively, and the audio Codec has a 128 kbps 
transfer rate (1 DMA per 750 cycles). In a program with 
many memory operations, the memory access is 50% of the 
total cycle in the case of continuous store, and the stack 
operation is 10% of the total cycle. In the worst case, the 
CPU performance degradation by the DMA operation of the 
peripheral units in memory operation is 9.57%. 

The microcontroller used in this paper takes about 10 
MIPS at 12 MHz. The performance degradation of the 
microcontroller by DMA is a maximum of 9.57% in the 
memory operation. In the common case, using UART for the 
HCI, the performance degradation by DMA is very small, 
and the processing performance is sufficient for a file transfer 
application. The result is demonstrated by a field 
programmable gate array (FPGA) prototype. However, in the 
USB operation with a maximum transfer rate (12 Mbps), the 
memory access through DMA takes a large part of the 
memory operations. The 9.57% performance degradation is 
considerable. A solution for this worst-case is to extend the 
data width of the USB interface. A 16-bit data width of the 
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USB interface results in about 50% reduction of the 
performance degradation in the worst-case memory operation. 
Thus, though the dedicated buffers in the peripherals are 
removed, data transmission and reception and packet control 
have been performed without the reduction of the data 
transfer rate in the file transfer application. 

We constructed an FPGA prototype to validate the 
hardware and software in a realtime environment. We 
mapped our design into a Xilinx one-million gate Virtex chip 
and implemented a test board. The test PCB board contained 
the FPGA, flash memory, external RAM, Ericsson RF front-
end module, PBA313 01/2 [8], and antenna. Figure 7 shows 
the FPGA test board for realtime operation testing. We 
confirmed and verified the point-to-point connection [19] 
capability of the baseband module with two test boards. Each 
board was connected to a PC through a UART interface. Two 
boards successfully established a connection and transferred 
bitstreams and files. The maximum data transfer rate 
measured in the test was 723 kbps in the DH5 packet using a 
5-slot size. 

In parallel with the FPGA prototype, an ASIC chip of the 
baseband module was fabricated in a 0.25-µm 5metal CMOS 
 

 

Fig. 7. The FPGA test board (front and rear views).  

 

Table 1. Major chip characteristics. 

Technology 0.25 µm CMOS 5LM 
Core size 2.79 mm ×2.80 mm 
Gate count 85,000 
Supply voltage 2.5 V 
Operating clock 48 MHz 
CPU performance 10 MIPS 
UART Max. 1.5 Mbps 
USB (USB spec. ver 1.1) 12 Mbps 

 

technology. The ASIC chip had no on-chip SRAM. All the 
blocks of the chip were soft cores described in RTL with 
Verilog HDL and fully synthesizable. We used a semi-custom 
method for implementation. The chip size had a 2.79 
mm×2.80 mm area and the operation clock was 48 MHz. 
The module was made up of a logic part of only 85,000 gates. 
The chip was fully tested using an IMS ATS2 test station to 
verify its functionality and timing. Table 1 shows the 
characteristics of the prototype chip. 

VIII. Conclusion 

We have presented a small, flexible baseband module for 
Bluetooth wireless communication. The complex control 
tasks of the Bluetooth baseband layer protocols were 
implemented in software running on the embedded 
microcontroller. The hardware-efficient functions, such as 
low-level bitstream link control functions; HCIs, such as 
UART and USB interfaces; and audio Codec were performed 
by dedicated hardware blocks. Furthermore, we eliminated 
FIFOs for data buffering between hardware functional blocks. 

We implemented and tested the module by both ASIC and 
FPGA. We tested realtime operations of the FPGA prototype 
for file and bitstream transfers and point-to-point connection 
between PCs. The ASIC chip was fabricated in a 0.25 µm 
CMOS technology. The chip had only a 2.79 mm×2.80 mm 
core size, and we tested its functionality and timing 
specification using an IC test station. Furthermore, our 
baseband module was designed in synthesizable Verilog 
HDL. Thus, it can be easily integrated as an IP core on SoC 
ASICs and adjusted to various Bluetooth applications with 
small size, high speed, and low cost. 

A systematic hardware/software trade-off could be further 
investigated for the optimization of power consumption in 
addition to area reduction and also for various application 
environments. Interoperability with other wireless 
specifications and performance enhancement in the design or 
in the Bluetooth specification could also be studied. 
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