
328 Ik-Jae Chun et al. ETRI Journal, Volume 25, Number 5, October 2003

Bluetooth is a specification for short-range wireless
communication using the 2.4 GHz ISM band. It emphasizes
low complexity, low power, and low cost. This paper
describes an area-efficient digital baseband module for
wireless technology.

For area-efficiency, we carefully consider hardware and
software partitioning. We implement complex control tasks
of the Bluetooth baseband layer protocols in software
running on an embedded microcontroller. Hardware-
efficient functions, such as low-level bitstream link control;
host controller interfaces (HCIs), such as universal
asynchronous receiver transmitter (UART) and universal
serial bus (USB) interfaces; and audio Codec are performed
by dedicated hardware blocks. Furthermore, we eliminate
FIFOs for data buffering between hardware functional
units. The design is done using fully synthesizable Verilog
HDL to enhance the portability between process
technologies so that our module can be easily integrated as
an intellectual property core on system-on-a-chip (SoC)
ASICs. A field programmable gate array (FPGA) prototype
of this module was tested for functional verification and
realtime operation of file and bitstream transfers between
PCs. The module was fabricated in a 0.25-µm CMOS
technology, the core size of which was only 2.79 mm×2.80
mm.

Keywords: Bluetooth, baseband module, link controller,
intellectual property.

Manuscript received Jan. 15, 2003; revised July 31, 2003.
This work was supported in part by the Korea Science and Engineering Foundation through

the MICROS center and IDEC at KAIST, Korea.
Ik-Jae Chun (phone: +82 42 821 7707, email: ijchun@ieee.org) and Bo-Gwan Kim (email:

bgkim@cnu.ac.kr) are with the Department of Electronics Engineering, Chungnam National
University, Daejeon, Korea.

In-Cheol Park (email: icpark@ee.kaist.ac.kr) is with the Department of Electrical
Engineering and Computer Science, KAIST, Daejeon, Korea.

I. Introduction

Due to progress in related technologies in the past decade,
wireless telecommunication technology has been applied to
telephony services, medical instruments, home electronics, and
other applications. It has been replacing existing wired
applications for the increased convenience of customers and
for opening new applications. Wireless communication using
the 2.4 GHz ISM band in particular is forecasted to increase
explosively [1] because the band is used without license.

Bluetooth, operating in the ISM band, is a specification [2]
for short-range wireless communication. It was developed in
1999 to substitute cables connecting portable or desktop
devices and to build low-cost wireless networks for mobile and
portable devices. It emphasizes low complexity, low power
consumption, and low cost [3]-[5]. It is crucial to implement
digital baseband processing in a cheap, small module and
desirable to integrate the whole system on a chip to achieve the
power and cost targets [5]. Baseband modules as reusable
intellectual property (IP) cores [6] enable those higher levels of
integration through system-on-a-chip (SoC) design and reduce
time-to-market.

The Bluetooth baseband module is in general responsible for
carrying out link control and link management tasks. The
detailed tasks of the module vary significantly depending on
applications. For the simplest applications, such as wireless
headsets and cellular phone add-on dangles, the entire
application as well as a basic part of the baseband layer
protocols may be implemented in software on the baseband
processor. For more complex applications expecting high-
speed full baseband operation and host controller interface
(HCI), most of the baseband protocols would be implemented
in hardware while more complex upper layer protocols and

A Fully Synthesizable Bluetooth Baseband
Module for a System-on-a-Chip

 Ik-Jae Chun, Bo-Gwan Kim, and In-Cheol Park

ETRI Journal, Volume 25, Number 5, October 2003 Ik-Jae Chun et al. 329

application software are processed on a host processor.
Allocating more functions to hardware from software can reduce
the load/interrupt frequency, but the trade-off could produce a
significant increase in gate count and loss of connection
flexibility with a resultant poor interoperability performance. The
baseband module should therefore be very flexible so as not to
waste the processing power and hardware resource.

This paper describes an area-efficient digital baseband
module that is suitable for use as an IP core on SoC ASICs. To
gain more flexibility, we used a programmable embedded
microcontroller optimized to our Bluetooth core. The
programmable embedded microcontroller performs as many
tasks for channel control and interface as possible. To reduce
the size, we merged the data-transfer FIFO buffers distributed
in functional units, such as USB, UART, link controller, and
audio Codec, into the internal SRAM. The functional units
access the SRAM by direct memory access (DMA) through a
memory management unit (MMU). The module is made up of
a logic part of only 85,000 gates and a 4 kB single-port SRAM.
It conforms to the latest version of the Bluetooth (version 1.1)
[2]. In addition, it supports firmware programming capability.

The remainder of this paper is organized as follows. Section
II gives the overall architecture of our Bluetooth baseband
module. In sections III and IV, we present the structure and
design of a microcontroller subsystem and a link controller.
Section V describes the host controller interfaces and section
VI an audio Codec for the Bluetooth module. Section VII
summarizes our experiments and results. Finally, we present
the conclusions of the paper.

Audio
CODEC

Microcontroller Subsystem

RF
module

PCM chip HostFlash
memory

On-chip Bluetooth Baseband Module

Link controller

UART USB

Micro-
controller

SRAM

Memory
management

unit (MMU)

Fig. 1. Overall architecture of the Bluetooth baseband module.

II. Overall Architecture of the Baseband Module

A Bluetooth module generally consists of an RF module to
generate wireless channels for data transmission and a
baseband module to execute link management tasks, link
control tasks, and bitstream processing. In the design of the
Bluetooth baseband module, the link manager and link
controller are very important function blocks. The link
manager performs link management tasks, translating
commands and data into operations at the link controller and

Fig. 2. The block diagram of the link controller.

Tx/Rx control

M
C

U
 &

 D
M

A
 in

te
rf

ac
e

Bitstream data path

Encryption engine

Encryption key
generation

Rx correlator

Sync word
generation

Timebase &
CLKN

CLK offset
control

Hop selection

Baseband unit
control

Clock
generation
 & control

Clock input

DMA interface

MCU interface

RF interface

Baseband
function unit

Serial interface

Data interface

In/out interfaceR
ad

io
 in

te
rf

ac
e

LM/LC control
register

IRQ control

DMA control

330 Ik-Jae Chun et al. ETRI Journal, Volume 25, Number 5, October 2003

controlling link establishment, link destruction, and link
configuration among Bluetooth devices. This part is generally
performed by software running on the embedded
microprocessor. The link controller carries out the link control
protocol, which is responsible for the mechanics of maintaining
a link once established, and performs the bit-intensive and
time-critical part [5]. This part is generally implemented in
dedicated hardware.

Our baseband module consists of five major functional units:
a microcontroller subsystem, a link controller, a universal
asynchronous receiver transmitter (UART), a universal serial
bus (USB), and an audio Codec. Figure 1 shows the overall
architecture of the Bluetooth baseband module. The module is
designed so that the microcontroller can easily control each of
the peripherals through internal registers and memory mapped
I/O.

The microcontroller subsystem consists of a microcontroller,
an MMU, and an SRAM (Fig. 1). It manages the other units
and executes the Bluetooth link manager, host controller
interface, and some part of the link control protocol software.
The link controller performs encoding and decoding of
Bluetooth bitstream data and low-level timing control. The
UART and USB are HCI physical transport layers [2] and
operate alternatively. The audio Codec for voice data supports
all three of the Bluetooth audio coding methods: A-law, µ-law,
and CVSD.

The base interface of the module complies with the one of
the ARM7TDMI controller [7], which is commonly used in
Bluetooth systems. As shown in Fig. 2, an RF interface
connects the baseband module with an RF module. The RF
interface consists of a serial interface, a data interface, and an
in/out interface. It was designed on the basis of Ericsson’s RF
module interface [8]. However, for compatibility with other RF
chip-solutions [9], [10], the data interface and the in/out
interface were designed considering both common interface
signals and unique interface signals each commercial RF chip
has. The baseband module controls the RF modules through
the serial interface based on the IEEE standard 1149.1
boundary scan architecture. The timing of the RF interface
signals for bitstream data transmission is controlled by the
LM/LC control register of the link controller in Fig. 2.
Therefore, the baseband module can be connected directly to
various RF modules via the RF interface.

Several baseband hardware modules have been reported
either as a part of a system or as an IP [11]-[14]. Their size,
however, is large either because they have a distributed buffer
(the total dedicated buffer size is about 585 bytes) in each
module, namely, the baseband, USB, audio Codec, and UART
[14], or because massive hardware is adopted to perform
almost all the tasks while the embedded microcontroller is

idling for most of the time (the gate count of the baseband IP is
280,000 gates in 0.18-µm technology) [11] or because they use
area-occupying dual-port internal SRAMs [12]. However,
since our module has the minimum number of dedicated
buffers, supports transmission of data via DMA, and consists
of several modules designed as IP blocks, our baseband core is
a simple, small, and portable Bluetooth core that is suitable for
use as an IP core.

The main input clock is 48 MHz. The USB unit runs at the
48 MHz external clock in order to gain synchronization with a
12 MHz Rx bitstream. The other units use a 12 MHz clock that
is generated by dividing the 48 MHz by four to save power
consumption, but the interface with the radio module operates
by the other clocks. The other subclocks, 3.2 kHz, 4 MHz, and
1 MHz clocks, are used in relation to the RF interface between
the link controller and an external RF module. The 3.2 kHz is
provided from the RF module and used for timing
synchronization to the link connection. The 4 MHz frequency
is used for the serial interface between the link controller and
the RF module. Transmission is synchronized to the 1 MHz
provided by the RF module, and reception is synchronized to
the 1 MHz clock extracted from the phase-locked loop block of
the RF interface block in the link controller.

III. Microcontroller Subsystem

The microcontroller in Fig. 1 controls the other units via a
memory-mapped I/O interface and interrupts. The other
important task of the microcontroller is to run the Bluetooth
link manager, the HCI, and a part of the link control protocol
software. The microcontroller performs the complex part of the
link control protocol that requires flexibility, such as decision
making on received baseband packets and context switching
between links, while the link controller performs the bit-
intensive and time-critical part.

The MMU in Fig. 1 manages the memory interface and
memory-mapped I/O interface of the microcontroller. One of
the most important tasks of the MMU is DMA of peripheral
units. If the link controller and HCI units have their own data-
transfer buffers as in reported designs [14], the buffers will
dominate the size of those units when implemented with flip-
flops and impose a sizable burden on the microcontroller to
move the data. To solve this problem, we merged the
distributed large buffers into the internal SRAM, which already
existed for the program and data of the microcontroller, which
resulted in a great area reduction. Compared to the distributed
buffer-based architecture, the logic gate count in functional
units and the microcontroller without SRAM was reduced
from 132,000 to 85,000, a 35.7% reduction. When 4 kB of on-
chip SRAM was counted together, the net area reduction was

ETRI Journal, Volume 25, Number 5, October 2003 Ik-Jae Chun et al. 331

27.4%. A 4 kB SRAM was sufficient to run a whole simple
application program on the microcontroller, whereas the
memory intensive logical link control and adaptation protocol
segmentation and reassembly of complex applications may be
performed on a host.

In the memory access, considering the load of the
microcontroller, the peripheral has a low load. Therefore,
although the microcontroller has priority over the other
peripherals, a processing delay or transmitting and receiving
error on the peripheral’s operation is not generated. This low
gate count is made possible by the DMA architecture. This
architecture simplifies the SoC design and nearly eliminates
buffer requirements.

For this Bluetooth baseband module, we used a clone of the
Advanced RISC Machines ARM7TDMI core as the
microcontroller. We used a single-port on-chip SRAM, which
was half as large as a dual-port SRAM of the same capacity. As
the ARM7 architecture does not access the RAM while
fetching instructions from the flash memory, DMA can be
easily implemented with a small single-port SRAM. The
instruction fetch and the fixed data load of the ARM processor
were obtained from flash memory through a 16-bit interface. In
addition, while a peripheral accessed the SRAM (data
memory), the processor could fetch instructions from flash
memory.

The MMU also provides flash memory programming
capability through a UART interface. At power-up, a dedicated
pin is used to select the loading of a new program from the
UART interface.

IV. Link Controller

The link controller is a part of the baseband module for
processing the bit-intensive baseband protocol functions, i.e.,
Bluetooth bitstream processing and encryption, which are
power-efficient if implemented in hardware. In addition, the
most time-critical portions of the link control task, such as low-
level timing control and frequency hop calculation, are
processed by the link controller. The link controller also exactly
transmits the processing information about the link connection,
such as Tx/Rx timing, interrupt, and event information, to the
link manager. The link controller conforms to the latest version
of the Bluetooth specification (version 1.1) and supports all of
the six asynchronous connectionless (ACL), four synchronous
connection-oriented (SCO), and four common packet types.
Figure 2 shows a block diagram of the Bluetooth link controller.

As the figure depicts, the link controller has a baseband
function unit. The baseband function unit is responsible for the
most important tasks of the link controller. The tasks are to
perform bit-intensive baseband protocol and the time-critical

portion. A Tx/Rx control block and a baseband unit control
block control the baseband function unit by generating Tx/Rx
timing and packet control signals. The baseband function unit
implemented by hardware processes the most time-critical
portion of the link control tasks. For this, the baseband function
unit has been designed to perform as many hardware-efficient
tasks as possible: low-level timing control, frequency hop
calculation, encryption, decryption, access code generation and
detection, correlation, Bluetooth clock control, etc.

The microcontroller can manage all of the link controller
functions, for instance bitstream processing, interrupt, and
encryption, by setting the internal registers of the link controller.
When a critical event occurs in relation to transmission or
reception of packets, the link controller calls the
microcontroller interrupt, and then the event information is
transferred to the microcontroller via an interrupt register in the
LM/LC control register of the link controller. The RF interface
consists of a serial interface, a data interface, and an in/out
interface. The data and in/out interfaces are responsible for
connection for packet transmission from the link controller to
an RF module. The serial interface controls the RF module.
The RF interface also has a digital phase-locked loop logic for
Rx synchronization and is responsible for connection with an
RF module. For the detection of a designated packet of data,
the link controller has to periodically perform synchronization
with a syncword. For this, a correlator using a 64-bit syncword
is designed in the baseband function unit.

Before transmission through the RF channel, a bitstream data
path block is essential for protecting the data against an
imperfect channel. The encryption/decryption block deals with
the security of information. Encryption is used as a safeguard
against eavesdropping. The bitstream data path block consists
of several channel coding blocks, such as HEC, CRC, Whiten,
and FEC. The bitstream data path block is also designed so that
data can continuously stream through the channel coding
blocks without any bitstream buffers between them, which
results in an area reduction. To achieve the continuous stream,
in the bitstream data path block shown in Fig. 3, we designed
the sequencers that control the timing of each function block,
such as HEC, CRC, Whiten, Encryption, and FEC. The
sequencers can be programmed according to the different
packet types and carry out the required processing functions
without further microcontroller intervention. In addition, we
heavily apply a clock-gating scheme in order to achieve low
power consumption. Figure 3 shows the data transmission and
reception flow with the sequencer logic in the bitstream data
path block.

Rx processing is different from Tx processing. Because we
do not know the packet type and length in advance, we must
recognize such information during reception. An Rx block

332 Ik-Jae Chun et al. ETRI Journal, Volume 25, Number 5, October 2003

Fig. 3. Bitstream flow in the bitstream data path block.

Microcontroller
RF control

Baseband control
LMP control
HCI control

Interface

Interface

Packet
compose

Packet
decompose

CRC &
HEC

Encrypt W hiten FEC

CRC &
HEC

Decrypt De-whiten FEC

Tx block

HCI

Tx/Rx sequencer

Payload Header Analysis

Packet Header
Analysis

Bitstream data path

Rx block

therefore requires a block that analyzes the form of received
data. To perform this task, we designed the packet header
analysis block and the payload header analysis block in the
bitstream data path block in Fig. 3. The packet header
analysis block first analyzes the control information
associated with the packet, such as the address of the
Bluetooth slave device for which the packet is intended and
information on the packet type, and then the payload header
analysis block analyzes the logical link control information,
such as information on the length of the message in the
packet.

The clock control is one of the most important parts in the
design of a Bluetooth unit. When two Bluetooth units are to
establish a communication channel, the clock (slave clock)
and the phase of the slave device must be synchronized to the
clock (master clock) of the master device. For this, the
baseband function unit uses a 3.2 kHz clock and counts it
with a 28 bit counter. The CLK offset control logic in Fig. 2
controls three Bluetooth-specified clocks: CLKN, CLKE,
and CLK [2], [3], [5]. CLKN, the native clock, is used as the
basis of the other clocks. CLKE and CLK, which represent
the estimated clock and master clock, respectively, are
obtained by adding an offset to CLKN. The Bluetooth clocks
feed the hop selection logic that generates a hopping
sequence for the 79-hop system.

V. Host Controller Interfaces

For data transmission and reception between the Bluetooth
baseband module and a host, such as a PC and mobile or
portable devices, two serial interfaces, UART and USB, are

provided. The serial interfaces send and receive bit sequences
on the status of these bits to and from another unit that
processes the bit sequences [15]. The UART and USB units
constitute the physical layer of the Bluetooth HCI. Each unit
has a special function for Bluetooth data transfer.

1. UART

The Bluetooth HCI UART transport layer is the most
general serial interface between the host and the Bluetooth
device. The UART unit is designed on the basis of industry-
standard 16C450. It supports baud rates from 300 bps to 1.5
Mbps by a numerical controlled oscillator, and the default bit
rate is 57.6 kbps. It also provides firmware-programming
capability to meet a modified higher protocol.

The UART unit consists of a Tx unit, an Rx unit, an
interrupt block, a flow control block, and an interface block
(Fig. 4). The Tx unit converts the parallel data into a serial
form to transmit them to the host. The data from the DMA
interface are stored in buffer registers, converted into a serial
form at the shift register, and transmitted. The Rx unit
processes the serial data received from RXD input. Unlike an
Rx unit in a general UART, this unit includes a data check
block that detects the start bit of data and a packet decoder
that finds the packet type and length of the received HCI
packets to help HCI processing of the microcontroller.

2. USB

The USB unit complies with USB Specification 1.1 [16]
and the HCI USB transport layer specification of Bluetooth
v1.1 [2] and supports a full-speed 12 Mbps interface.

ETRI Journal, Volume 25, Number 5, October 2003 Ik-Jae Chun et al. 333

Fig. 4. The block diagram of the UART unit.

Rx shift
register

Receiver
control

Baud
generator

Tx shift
register

Transmitter
control

Interrupt
control

Flow control

Interrupt
register

Flow control
register

RTS

Interface
&

control
logic

DMA
interface

Controller
interface

CTS

TXD

RXD

Tx unit

Rx unit

Receiver
buffer

Baud set
register

Transmitter
buffer

The USB controller unit consists of a transceiver interface,
serial interface engine, protocol layer handler,
registers/endpoint manager, and parallel interface (Fig. 5).
The transceiver interface block generates output enable
signals for the transceiver to drive the signal line when
sending data, and it contains an Rx clock recovery circuit.

Fig. 5. The block diagram of the USB unit.

Parallel
interface

&
interrupt

MMU

Control register &
endpoint manager

Tx

Rx Rx

Tx

USB
trans-
ceiver

Protocol
layer

handler

Serial
interface
engine

Trans-
ceiver

interface

The serial interface engine encodes, decodes, and samples
signals at the recovered clock. The protocol layer handler
works as a transaction sequencer, which performs the control
to send or receive expected packets. If it receives an
unexpected packet, it will ignore the packet. When it receives
an expected error-free packet, it stores the packet in the
corresponding endpoint FIFO via DMA and writes related
information to registers. The parallel interface and interrupt
are provided for data exchange with memory. The different
types of HCI packets are mapped onto different USB
endpoints according to the Bluetooth specification [2].

VI. Audio Codec

A major application for the Bluetooth is as a carrier of
audio information. The audio data are carried via SCO
channels and through the use of several coding schemes. Our

Fig. 6. The block diagram of the audio CODEC.

Clock
generator

External
PCM interface

A-law encoder

µ -law encoder

CVSD
encoder

Up-samplerS/P converter

A-law decoder

µ -law decoder

CVSD
decoder

Down-
sampler

P/S converter

CODEC Engine

VC_CTRL

VCDI_MODE

Register
bank

256 kHz
64 kHz
8 kHz

DMA
interface

DMA
control

CLK
input

Controller
interface

PCM
chip

interface

334 Ik-Jae Chun et al. ETRI Journal, Volume 25, Number 5, October 2003

module supports direct PCM connection by the baseband
audio Codec.

The Bluetooth specifies three audio coding techniques: log
PCM coding using either A-law or µ-law [17] and continuous
variable slope delta modulation (CVSD) [2], [18]. Since the
table lookup of the log PCM and the low-pass filtering
necessary in CVSD to avoid aliasing are appropriate for
hardware implementation, we implemented all three coding
methods in a hardware audio Codec and designed the
external interface based on a general commercial PCM chip.
Figure 6 shows the hardware implementation. In simple
audio applications, the audio Codec can access voice data
without using an HCI. Its interface is designed to pass 8- to
16-bit decoded linear PCM signals. For PC applications, a
coded audio bitstream can also be transmitted via SCO data
packets through USB or UART.

In the Bluetooth specification, the sampling frequencies for
log PCM and CVSD are not the same: 8 kHz for log PCM
and 64 kHz for CVSD. We configured the PCM interface of
the audio subsystem to operate at 8 kHz and implemented
interpolation with linear interpolation and decimation with
low-pass filtering for the CVSD block in the Codec engine
(Fig. 6).

The audio Codec is so small that it requires only 5,000
gates, where the 5-tap elliptical IIR low-pass filter occupies
half of the entire unit.

VII. Performance Evaluation and Implementation

We moved the dedicated buffer blocks in the Bluetooth
baseband module into the SRAM and adopted a DMA
architecture. However, these operations may induce
performance degradation in running an application and
influence data transfer in the baseband module. Therefore, the
performance degradation of the baseband module due to
removing dedicated buffer blocks should be carefully
analyzed to meet the performance specification. According to
[5], the CPU performance required for the baseband layer
(link controller, link manager, and HCI) is about 10 to 15
million instructions per second (MIPS). However, this is not
the optimum value, and there is a trade-off between the gate
count and CPU performance. Adding more functions to
hardware can reduce the CPU performance. Figures 2 and 3
show our solution for the trade-off. The operating clock is 12
MHz except for the USB unit, the unit of data transfer among
peripherals of the baseband module is 8 bits, and the MMU
takes 2 cycles for DMA of 8 bits. When the microcontroller
does not request RAM, DMA is started, and if the
microcontroller request is asserted during the DMA operation,
DMA is interrupted. In addition, in the case of a continuous

stack operation (stack read/write) in the microcontroller, the
MMU stops the stack operation and starts the DMA operation
in order to prevent starvation. The following is the equation
for CPU performance degradation (PDCPU) by the DMA in a
memory operation:

).21(
)(

StackRAM

AudioLCUSBCPU

PP
TITITIPD
×+××

++=

Here, the terms TIUSB, TILC, and TIAudio are the numbers of
the direct memory access per clock cycle of each peripheral.
The constant 1 means 1 cycle stall when the microcontroller
accesses the RAM. The constant 2 means 2 cycles stall when
the microcontroller executes a stack operation. The term
PRAM is the frequency of memory access for the total cycle,
and PStack is the frequency of the stack operation for the total
cycle.

• Overall performance
This is the common case for data transmission and

reception. In this case, the USB and the link controller have a
1 Mbps transfer rate (1 DMA per 96 cycles), and the audio
Codec has a 128 kbps transfer rate (1 DMA per 750 cycles).
The memory access is below 10% of the total cycle, and the
stack operation is below 1% of the total cycle. Therefore, the
CPU performance degradation by the DMA in the memory
operation is 0.27%.

• Worst-case performance

In this case, the USB and the link controller have a 12 Mbps
(1 DMA per 8 cycles) and 1 Mbps (1 DMA per 96 cycles)
transfer rate, respectively, and the audio Codec has a 128 kbps
transfer rate (1 DMA per 750 cycles). In a program with
many memory operations, the memory access is 50% of the
total cycle in the case of continuous store, and the stack
operation is 10% of the total cycle. In the worst case, the
CPU performance degradation by the DMA operation of the
peripheral units in memory operation is 9.57%.

The microcontroller used in this paper takes about 10
MIPS at 12 MHz. The performance degradation of the
microcontroller by DMA is a maximum of 9.57% in the
memory operation. In the common case, using UART for the
HCI, the performance degradation by DMA is very small,
and the processing performance is sufficient for a file transfer
application. The result is demonstrated by a field
programmable gate array (FPGA) prototype. However, in the
USB operation with a maximum transfer rate (12 Mbps), the
memory access through DMA takes a large part of the
memory operations. The 9.57% performance degradation is
considerable. A solution for this worst-case is to extend the
data width of the USB interface. A 16-bit data width of the

ETRI Journal, Volume 25, Number 5, October 2003 Ik-Jae Chun et al. 335

USB interface results in about 50% reduction of the
performance degradation in the worst-case memory operation.
Thus, though the dedicated buffers in the peripherals are
removed, data transmission and reception and packet control
have been performed without the reduction of the data
transfer rate in the file transfer application.

We constructed an FPGA prototype to validate the
hardware and software in a realtime environment. We
mapped our design into a Xilinx one-million gate Virtex chip
and implemented a test board. The test PCB board contained
the FPGA, flash memory, external RAM, Ericsson RF front-
end module, PBA313 01/2 [8], and antenna. Figure 7 shows
the FPGA test board for realtime operation testing. We
confirmed and verified the point-to-point connection [19]
capability of the baseband module with two test boards. Each
board was connected to a PC through a UART interface. Two
boards successfully established a connection and transferred
bitstreams and files. The maximum data transfer rate
measured in the test was 723 kbps in the DH5 packet using a
5-slot size.

In parallel with the FPGA prototype, an ASIC chip of the
baseband module was fabricated in a 0.25-µm 5metal CMOS

Fig. 7. The FPGA test board (front and rear views).

Table 1. Major chip characteristics.

Technology 0.25 µm CMOS 5LM
Core size 2.79 mm ×2.80 mm
Gate count 85,000
Supply voltage 2.5 V
Operating clock 48 MHz
CPU performance 10 MIPS
UART Max. 1.5 Mbps
USB (USB spec. ver 1.1) 12 Mbps

technology. The ASIC chip had no on-chip SRAM. All the
blocks of the chip were soft cores described in RTL with
Verilog HDL and fully synthesizable. We used a semi-custom
method for implementation. The chip size had a 2.79
mm×2.80 mm area and the operation clock was 48 MHz.
The module was made up of a logic part of only 85,000 gates.
The chip was fully tested using an IMS ATS2 test station to
verify its functionality and timing. Table 1 shows the
characteristics of the prototype chip.

VIII. Conclusion

We have presented a small, flexible baseband module for
Bluetooth wireless communication. The complex control
tasks of the Bluetooth baseband layer protocols were
implemented in software running on the embedded
microcontroller. The hardware-efficient functions, such as
low-level bitstream link control functions; HCIs, such as
UART and USB interfaces; and audio Codec were performed
by dedicated hardware blocks. Furthermore, we eliminated
FIFOs for data buffering between hardware functional blocks.

We implemented and tested the module by both ASIC and
FPGA. We tested realtime operations of the FPGA prototype
for file and bitstream transfers and point-to-point connection
between PCs. The ASIC chip was fabricated in a 0.25 µm
CMOS technology. The chip had only a 2.79 mm×2.80 mm
core size, and we tested its functionality and timing
specification using an IC test station. Furthermore, our
baseband module was designed in synthesizable Verilog
HDL. Thus, it can be easily integrated as an IP core on SoC
ASICs and adjusted to various Bluetooth applications with
small size, high speed, and low cost.

A systematic hardware/software trade-off could be further
investigated for the optimization of power consumption in
addition to area reduction and also for various application
environments. Interoperability with other wireless
specifications and performance enhancement in the design or
in the Bluetooth specification could also be studied.

References

[1] Http://www.bluetooth.com.
[2] Bluetooth Special Interest Group, Specification of the Bluetooth

System Volume 1, Core, Ver. 1.1, Feb. 2001.
[3] R. Shorey and B.A. Miller, “The Bluetooth Technology: Merits

and Limitations,” IEEE Int’l Conf. on Personal Wireless
Communications, 2000, pp. 80-84.

[4] J.C. Haartsen and S. Mattisson, “Bluetooth–A New Low-Power
Radio Interface Providing Short-Range Connectivity,” Proc. IEEE,
vol. 88, no. 10, Oct. 2000, pp. 1651-1661.

[5] Jennifer Bray and Charles F. Sturman, BLUETOOTH Connect

336 Ik-Jae Chun et al. ETRI Journal, Volume 25, Number 5, October 2003

Without Cables, Prentice Hall PTR, 2001.
[6] T. Grahm and B. Clark, “SoC Integration of Reusable Baseband

Bluetooth IP,” Proc. of Design Automation Conf., June 2001, pp.
256-261.

[7] Advanced RISC Machines, ARM7TDMI Data Sheet, Aug. 1995.
[8] Ericsson Microelectronics, PBA313 01/2 Bluetooth Radio,

http://www.ericsson.com, Nov. 1999.
[9] Taiyoyuden, EYSR2SXXX(Radio+Modem) Specification Report,

http://www.stonestreetone.com, Sept. 2001.
[10] Silicon Wave, SiW1701 Radio Modem Data Sheet, Sept. 2002.
[11] Ericsson Microelectronics, EBCP CherryRed Bluetooth

Baseband IP, http://www.ericsson.com, May 2001.
[12] F.O. Eynde et al., “A Fully-Integrated Single-Chip SOC for

Bluetooth,” IEEE Int’l Solid-State Circuits Conf., Feb. 2001, pp.
196-197, 446.

[13] Cambridge Silicon Radio, BlueCore01b Product Data Sheet, July
2001.

[14] Atmel, Single Chip Bluetooth Controller AT76C551 Data Sheet,
http://www.atmel.com, Aug. 2001.

[15] Yil Suk Yang et al., “A Serial Input/Output Circuit with 8 bit and
16 bit Selection Modes,” ETRI J., vol. 24, no. 6, Dec. 2002, pp.
462-464.

[16] Compaq, Intel, Microsoft, NEC, Universal Serial Bus
Specification 1.1, Sept. 28, 1998.

[17] International Telecommunications Union, ITU-T Recommen-
dations G.711 Pulse Code Modulation (PCM) of Voice
Frequencies, Nov. 1988.

[18] CML Semiconductor Products, Continuously Variable Slope
Delta Modulation (CVSD) – A Tutorial, AN/G-Purp/CVSD_1,
Nov. 1997.

[19] W. Simpson, “The Point-to-Point Protocol (PPP),” RFC 1661,
Network Working Group, July 1994.

[20] Ick-Sung Choi et al., “A Kernel-Based Partitioning Algorithm for
Low-Power, Low-Area Overhead Circuit Design Using Don’t-
Care Sets,” ETRI J., vol. 24, no. 6, Dec. 2002, pp. 473-476.

Ik-Jae Chun received the BS and MS
degrees in electronics engineering from
Chungnam National University (CNU) in
Daejeon, Korea, in 1998 and 2000. He is
currently a PhD student in the Department
of Electronics Engineering at CNU. His
current research interests include digital

system architecture, communication system design, VLSI, and
CAD. He is a student member of the IEEE.

Bo-Gwan Kim received the BS degree in
electronic engineering from Seoul National
University, the MS degree in electrical and
electronic engineering from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Korea, in 1976 and 1978. He received
the PhD degree in electrical and computer

engineering from the University of Wisconsin-Madison in 1989. From
March 1978 to February 1980, he worked at Korea Institute of Science
and Technology (KIST) as a Researcher, and from March 1980 to
February 1991, he was an Assistant Professor of Kum-Oh Institute of
Technology, Korea. He joined Chungnam National University in
March 1991 as a Professor in the Department of Electronics
Engineering. His current research interests include VLSI design for
communication systems and CAD for VLSI, such as lower-power
logic synthesis, hardware-software co-design, and technology
migration.

In-Cheol Park received the BS degree in
electronics engineering from Seoul National
University in 1986 and the MS and PhD
degrees in electrical engineering from KAIST in
1988 and 1992. Since June 1996, he has been
with the Department of Electrical Engineering
and Computer Science at KAIST first as an

Assistant Professor and now as an Associate Professor. Prior to joining
KAIST, he was with IBM T. J. Watson Research Center in Yorktown
Heights, New York, from May 1995 to May 1996, where he
researched on high-speed circuit design. He received the best paper
award at the ICCD in 1999 and the best design award at the ASP-DAC
in 1997. His current research interests include CAD algorithms for
high-level synthesis and VLSI architectures for general-purpose
microprocessors. He is a senior member of the IEEE.

