• Title/Summary/Keyword: low power mode

Search Result 1,107, Processing Time 0.025 seconds

An Integrated Single-Stage Zero Current Switched Quasi-Resonant Power Factor Correction Converter with Active Clamp Circuit (능동 클램프 회로를 적용한 단상 ZCS 공진형 역률개선 컨버터)

  • 이준영;문건우;고관본;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.626-630
    • /
    • 1999
  • A new integrated single-stage zero current switched(ZCS) quasi-resonant converter (QRC) for the power factor correction(PFC) converter is introduced in this paper. The power factor correction can be achieved by the discontinuous conduction mode(DCM) operation of an input current. The proposed converter has the characteristics of the good power factor, low line current harmonics, and tight output regulation. Furthermore, the ringing effect due to the output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF

Design of a CMOS Image Sensor Based on a Low Power Single-Slope ADC (저전력 Single-Slope ADC를 사용한 CMOS 이미지 센서의 설계)

  • Kwon, Hyuk-Bin;Kim, Dae-Yun;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.2
    • /
    • pp.20-27
    • /
    • 2011
  • A CMOS Image Sensor(CIS) mounted on mobile appliances always needs a low power consumption because of the battery life cycle. In this paper, we propose novel power reduction techniques such as a data flip-flop circuit with leakage current elimination, a low power single slope A/D converter with a novel comparator, and etc. Based on 0.13um CMOS process, the chip satisfies QVGA resolution($320{\times}240$ pixels) whose pitch is 2.25um and whose structure is 4-Tr active pixel sensor. From the experimental results, the ADC in the middle of CIS has a 10-b resolution, the operating speed of CIS is 16 frame/s, and the power dissipation is 25mW at 3.3V(Analog)/1.8V(Digital) power supply. When we compare the proposed CIS with conventional ones, the power consumption is reduced approximately by 22% in sleep mode, 20% in operating mode.

The Scheme for Efficient Driving of Engine/Generator-Battery in Series HEV (직렬형 HEV의 엔진/발전기-배터리 연계운전 방안)

  • 박영수;허민호;안재영;강신영;김광헌
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.423-426
    • /
    • 1999
  • This paper describes a driving scheme of the series hybrid electric vehicle that we have developed. Both series HEV and parallel HEV are well known. We chose series HEV because it provides good energy efficiency in urban driving and operates in all-electric mode in performance. And engine-Generator is driven at constant speed with constant load to maintain the low emission. And the battery supplies power during high-load and receive energy during low-load

  • PDF

Low Cost Power System Design for Plasma Display Panel(PDP)

  • Yoo, Kwang-Min;Lee, Jun-Young;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.250-255
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology using Boundary Conduction Mode(BCM) to control input current regulation. This method guarantees DCM condition to regulate the input current harmonics under all load conditions. An excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and adjusting transformer turns ratios, which makes it possible to be used for universal line applications. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

A Study on the Development of Switching Power Supply for testing communication equipment (통신장비 시험용 Switching Power Supply 개발에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Han, Kyung-Tae;Lee, Dong-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.253-257
    • /
    • 2003
  • This paper presents the Development of Switching Power Supply for testing communication equipment. The communication equipment need many kinds of voltage(-48V,27V,12V,5V,3.3V), and in case of low voltage needs large current($10{\sim}20A$). The previous Linear Power Supply was very heavy, has low efficiency and poor power-factor for testing communication equipment. This development has good efficiency and high power-factor using switch mode power supply technique. This Development of Switching Power Supply is composed of eight converters. The principles of operation, feature, and design considerations are illustrated and verified through the experiment with 600W prototype.

  • PDF

Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Kim, Min-Su;Ahn, Joon-Tae;Kim, Jong-Bae;Ju, Jung-Jin;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.312-318
    • /
    • 2005
  • Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

  • PDF

Reliability Assessment of Low-Power Processor Packages for Supercomputers (슈퍼컴퓨터에 사용되는 저전력 프로세서 패키지의 신뢰성 평가)

  • Park, Ju-Young;Kwon, Daeil;Nam, Dukyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • While datacenter operation cost increases with electricity price rise, many researchers study low-power processor based supercomputers to reduce power consumption of datacenters. Reliability of low-power processors for supercomputers can be of concern since the reliability of many low-power processors are assessed based on mobile use conditions. This paper assessed the reliability of low-power processor packages based on supercomputer use conditions. Temperature cycling was determined as a critical failure cause of low-power processor packages through literature surveys and failure mode, effect and criticality analysis. The package temperature was measured at multiple processor load conditions to examine the relationship between processor load and package temperature. A physics-of-failure reliability model associated with temperature cycling predicted the expected lifetime of low-power processors to be less than 3 years. Recommendations to improve the lifetime of low-power processors were presented based on the experimental results.

Low Parameter Sensitivity Deadbeat Direct Torque Control for Surface Mounted Permanent Magnet Synchronous Motors

  • Zhang, Xiao-Guang;Wang, Ke-Qin;Hou, Ben-Shuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1211-1222
    • /
    • 2017
  • In order to decrease the parameter sensitivity of deadbeat direct torque control (DB-DTC), an improved deadbeat direct torque control method for surface mounted permanent-magnet synchronous motor (SPMSM) drives is proposed. First, the track errors of the stator flux and torque that are caused by model parameter mismatch are analyzed. Then a sliding mode observer is designed, which is able to predict the d-q axis currents of the next control period for one-step delay compensation, and to simultaneously estimate the model parameter disturbance. The estimated disturbance of this observer is used to estimate the stator resistance offline. Then the estimated resistance is required to update the designed sliding-mode observer, which can be used to estimate the inductance and permanent-magnetic flux linkage online. In addition, the flux and torque estimation of the next control period, which is unaffected by the model parameter disturbance, is achieved by using predictive d-q axis currents and estimated parameters. Hence, a low parameter sensitivity DB-DTC method is developed. Simulation and experimental results show the validity of the proposed direct control method.

A design of low power structures of texture caches for mobile 3D graphics accelerator (모바일 3D 그래픽 가속기를 위한 저전력 텍스쳐 캐쉬 구조 설계)

  • Kim, Young-Sik;Lee, Jae-Young
    • Journal of Korea Game Society
    • /
    • v.6 no.4
    • /
    • pp.63-70
    • /
    • 2006
  • This paper studied various low power structures of texture caches for mobile 3D graphics accelerator to reduce the memory latency of texture data. Also the paper designed the texture cache with the variable threshold values of power mode transition according to the filtering algorithms. In the trace driven simulation, we compared the performance of those structures using Quake game engine as the benchmark. Also the algorithm was proposed and verified by the simulation, which has variable threshold values of power mode transitions according to the selected texture filtering method.

  • PDF

Design and Stability Analysis of a Fuzzy Adaptive SMC System for Three-Phase UPS Inverter

  • Naheem, Khawar;Choi, Young-Sik;Mwasilu, Francis;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.704-711
    • /
    • 2014
  • This paper proposes a combined fuzzy adaptive sliding-mode voltage controller (FASVC) for a three-phase UPS inverter. The proposed FASVC encapsulates two control terms: a fuzzy adaptive compensation control term, which solves the problem of parameter uncertainties, and a sliding-mode feedback control term, which stabilizes the error dynamics of the system. To extract precise load current information, the proposed method uses a conventional load current observer instead of current sensors. In addition, the stability of the proposed control scheme is fully guaranteed by using the Lyapunov stability theory. It is shown that the proposed FASVC can attain excellent voltage regulation features such as a fast dynamic response, low total harmonic distortion (THD), and a small steady-state error under sudden load disturbances, nonlinear loads, and unbalanced loads in the existence of the parameter uncertainties. Finally, experimental results are obtained from a prototype 1 kVA three-phase UPS inverter system via a TMS320F28335 DSP. A comparison of these results with those obtained from a conventional sliding-mode controller (SMC) confirms the superior transient and steady-state performances of the proposed control technique.