Chromatic Dispersion Compensation via Mid-span Spectral Inversion with Periodically Poled $LiNbO_3$ Wavelength Converter at Low Pump Power

  • Received : 2004.09.15
  • Published : 2005.06.30

Abstract

Mid-span spectral inversion (MSSI) has to utilize high optical pump power, for its operation principle is based on a nonlinear optical wavelength conversion. In this paper, a low pump-power operation of MSSI-based chromatic dispersion compensation (CDC) has been achieved successfully, for the first time to our knowledge, by introducing a noise pre-reduction scheme in cascaded wavelength conversions with periodically poled $LiNbO_3$ waveguides at a relatively low operation temperature. As preliminary studies, phase-matching properties and operation-temperature dependence of the wavelength converter (WC) were characterized. The WC pumped at 1549 nm exhibited a wide conversion bandwidth of 59 nm covering the entire C-band and a conversion efficiency of -23.6 dB at 11 dBm pump power. CDC experiments were implemented with 2.5 and 10 Gb/s transmission systems over 100 km single-mode fiber. Although it is well-known that the signal distortion due to chromatic dispersion is not critical at a 2.5 Gb/s transmission, the clear recovery of eye patterns was identified. At 10 Gb/s transmission experiments, eye patterns were retrieved distinctly from seriously distorted ones, and notable improvements in bit-error rates were acquired at a low pump power of 14 dBm.

Keywords

References

  1. J. Lightwave Technol. v.17 no.11 40 Gb/s and 4${\times}$40 Gb/s TDM/WDM Standard Fiber Transmission Weinert, C.M.;Ludwig, R.;Peiper, W.;Weber, H.G.;Breuer, D.;Petermann, K.;Kuppers, F.
  2. IEEE Photon. Technol. Lett. v.11 no.4 16${\times}$10 Gb/s WDM Transmission Over 840-km SMF Using Eleven Broad-Band Chirped Fiber Gratings Grarett, L.D.;Gnauck, A.H.;Forghieri, F.;Gusmeroli, V.;Scarano, D.
  3. J. Lightwave Technol. v.20 no.12 Automatic Chromatic Dispersion Compensation Using alternating Chirp Signal for Installation of High-Speed Transmission Sytstems Kuwahara, S.;Miyamoto, Y.;Hirano, A.
  4. IEEE Photon. Technol. Lett. v.13 no.8 Reduced Complexity Optical Duobinary 10-Gb/s Transmitter Setup Resulting in an Increased Transmission Distance Kaiser, W.;Wuth, T.;Wichers, M.;Rosenkranz, W.
  5. J. Lightwave Technol. v.20 no.12 Tunable Chromatic Dispersion Compensation in 40-Gb/s Systems Using Nonlinearly Chirped Fiber Bragg Gratings Pan, Z.;Song, Y.W.;Yu, C.;Wang, Y.;Yu, Q.;Popelek, J.;Li, H.;Li, Y.;Willner, A.E.
  6. J. Lightwave Technol. v.20 no.12 40-Gb/s WDM Transmission with Virtually Imaged Phased Array (VIPA) Variable Dispersion Compensators Ooi, H.;Nakamura, K.;Akiyama, Y.;Takahara, T.;Terahara, T.;Kawahata, Y.;Isono, H.;Ishikawa, G.
  7. OFC 2003 Technical Digest Tunable Dispersion Compensation at 10 Gb/s and 40 Gb/s Using Multicavity All-Pass Etalons Moss, D.;Lunardi, L.;Lamont, M.;Randall, G.;Colbourne, P.;Chandrasekhar, S.;Buhl, L.;Hulse, C.
  8. OFC 2004 on CD-ROM WDM Tuneable Dispersion Compensator with PLC Ring Resonators Suzuki, K.;Nakamatsu, I.;Shimoda, T.;Takaesu, S.;Ushioda, J.;Mizuki, E.;Horie, M.;Urino, Y.;Yamazaki, H.
  9. IEEE Photon. Technol. Lett. v.12 no.1 Efficient Wide-Band and Tunable Midspan Spectral Inverter Using Cascaded Nonlinearities in $LiNbO_3$ Waveguides Chou, M.H.;Brener, I.;Lenz, G.;Scotti, R.;Chaban, E.E.;Shmulovich, J.;Philen, D.;Kosinski, S.;Parameswaran, K.R.;Fejer, M.M.
  10. OFC 2004 on CD-ROM 10 Gbit/s, 25 GHz Spaced Transmission over 800 km without Using Dispersion Compensating Modules Jansen, S.L.;Khoe, G.D.;de Waardt, H.;Spalter, S.;Escobar, H.E.;Sher, M.;Woll, D.;Zhou, D.
  11. Electron. Lett. v.34 no.21 40 Gbit/s Transmission over 434 km Standard Fiber Using Polarization Independent Mid-Span Spectral Inversion Feiste, U.;Ludwig, R.;Dietrich, E.;Diez, S.;Ehrke, H.J.;Razic, Dz.;Weber, H.G.
  12. Fujitsu Sci. Tech. J. v.35 no.1 Wavelength Conversion Technologies for Photonic Network Systems Ishikawa, H.;Watanabe, S.;Kuwatsuka, H.
  13. IEEE Photon. Technol. Lett. v.11 no.2 Mid-Span Spectral Inversion without Frequency Shift for Fiber Dispersion Compensation: A System Demonstration Corchia, A.;Antonini, C.;D'Ottavi, A.;Mecozzi, A.;Martelli, F.;Spano, P.;Guekos, G.;Dall'Ara, R.
  14. Prog. Quantum Electron. v.26 no.3 Optical Phase Conjugation: Principles, Techniques, and Applications He, G.S.
  15. Appl. Phys. B v.73 no.5-6 Efficient Cascaded Difference Frequency Conversion in Periodically Poled $Ti:LiNbO_3$ Waveguides Using Pulsed and CW Pumping Schreiber, G.;Suche, H.;Lee, Y.L.;Grundkotter, W.;Quiring, V.;Ricken, R.;Sohler, W.
  16. IEEE Photon. Technol. Lett. v.11 no.6 1.5-${\mu}$m-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in $LiNbO_3$ Waveguides Chou, M.H.;Brener, I.;Fejer, M.M.;Chaban, E.E.;Christman, S.B.