• Title/Summary/Keyword: low k passivation

Search Result 125, Processing Time 0.035 seconds

The Effect of Polymer Thin Film for Sealing Buffer on the Characteristics of OLEO Device (OLED 소자의 특성에 미치는 밀봉 버퍼용 고분자박막의 영향)

  • Lee, Bong-Sub;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.102-108
    • /
    • 2008
  • In this paper, the LiF and polymer thin film as passivation layer have been evaporated on green OLED devices. HDPE, polyacenaphthylene, polytetrafluoroethylene, poly(2,6-dimethyl-1,4-pheneylene oxide), poly sulfone and poly(dimer-acid-co-alkyl poly-amine) have been used as polymer materials. The optical transmittance of evaporated polymer thin film was very good as an above 90% in visible range. The morphology of polymer thin film was measured by AFM. As a result of the measurement average roughness($R_a$) value of the polysulfone was very low as 2.2 nm. The green OLED devices with a structure of ITO/HIL/HTL/EML/Buffer/Al in series of various passivation films were fabricated and analyzed. It was observed that an OLED device with LiF as first passivation film has shown the good electrical and optical property, and all kind of polymer films did not influence on the I-V-L characteristics and the life time of OLED devices. Therefore, we found that polymer layer played a key role as a buffer layer between the inorganic passivation layers to relieve the stress of the inorganic layers.

Passivation Effects of Excimer-Laser-Induced Fluorine using $SiO_{x}F_{y}$ Pad Layer on Electrical Characteristics and Stability of Poly-Si TFTs ($SiO_{x}F_{y}$/a-Si 구조에 엑시머 레이저 조사에 의해 불소화된 다결정 실리콘 박막 트랜지스터의 전기적 특성과 신뢰도 향상)

  • Kim, Cheon-Hong;Jeon, Jae-Hong;Yu, Jun-Seok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.623-627
    • /
    • 1999
  • We report a new in-situ fluorine passivation method without in implantation by employing excimer laser annealing of $SiO_{x}F_{y}$/a-Si structure and its effects on p-channel poly-Si TFTs. The proposed method doesn't require any additional annealing step and is a low temperature process because fluorine passivation is simultaneous with excimer-laser-induced crystallization. A in-situ fluorine passivation by the proposed method was verified form XPS analysis and conductivity measurement. From experimental results, it has been shown that the proposed method is effective to improve the electrical characteristics, specially field-effect mobility, and the electrical stability of p-channel poly-Si TFTs. The improvement id due to fluorine passivation, which reduces the trap state density and forms the strong Si-F bonds in poly-Si channel and $SiO_2/poly-Si$ interface. From these results, the high performance poly-Si TFTs canbe obtained by employing the excimer-laser-induced fluorine passivation method.

  • PDF

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

a-Si:H/c-Si Heterojunction Solar Cell Performances Using 50 ㎛ Thin Wafer Substrate (50 ㎛ 기판을 이용한 a-Si:H/c-Si 이종접합 태양전지 제조 및 특성 분석)

  • Song, Jun Yong;Choi, Jang Hoon;Jeong, Dae Young;Song, Hee-Eun;Kim, Donghwan;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2013
  • In this study, the influence on the surface passivation properties of crystalline silicon according to silicon wafer thickness, and the correlation with a-Si:H/c-Si heterojunction solar cell performances were investigated. The wafers passivated by p(n)-doped a-Si:H layers show poor passivation properties because of the doping elements, such as boron(B) and phosphorous(P), which result in a low minority carrier lifetime (MCLT). A decrease in open circuit voltage ($V_{oc}$) was observed when the wafer thickness was thinned from $170{\mu}m$ to $50{\mu}m$. On the other hand, wafers incorporating intrinsic (i) a-Si:H as a passivation layer showed high quality passivation of a-Si:H/c-Si. The implied $V_{oc}$ of the ITO/p a-Si:H/i a-Si:H/n c-Si wafer/i a-Si:H/n a-Si:H/ITO stacked layers was 0.715 V for $50{\mu}m$ c-Si substrate, and 0.704 V for $170{\mu}m$ c-Si. The $V_{oc}$ in the heterojunction solar cells increased with decreases in the substrate thickness. The high quality passivation property on the c-Si led to an increasing of $V_{oc}$ in the thinner wafer. Short circuit current decreased as the substrate became thinner because of the low optical absorption for long wavelength light. In this paper, we show that high quality passivation of c-Si plays a role in heterojunction solar cells and is important in the development of thinner wafer technology.

Effects of Passivation Thin Films on the Optical Properties of the Green Organic Light Emitting Diodes (페시베이션 박막이 녹색 유기발광다이오드의 광학특성에 미치는 영향)

  • Mun, Sae Chan;Lee, Sang Hee;Park, Byung Min;Pyee, Jaeho;Chang, Ho Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.11-15
    • /
    • 2016
  • The organic light emitting diodes (OLEDs) have been studied as large flexible displays, light source and hard wares of internet of things. However, OLEDs show some drawbacks in terms of external environments due to the low work function of the metals and the reactive organic materials. In particular, the operation functions of the OLEDs tend to deteriorate rapidly by exposing the oxygen and moisture. So as to prevent it, domestic and overseas studies underway in various method such as ALD, PVD, CVD. But it has complex process and high cost. Therefore In order to protect devices from the external environments, it is important to develop the passivation thin films of low-cost and simple process which can prevent the devices from the penetration of the oxygen and moistures. In this study, to improve the reliability, passivation thin films were coated onto the green OLEDs by spin coating method and investigated the changes of the optical properties of the prepared devices at various doping concentrations of sodium alginate (SA). The passivation solutions were synthesized by using polyvinyl alcohol (PVA) host material with a dopant of SA which were added with the amounts of 10, 20 and 40 wt% into the PVA. As a result, the best barrier properties of the OLEDs were obtained for the samples with 40 wt% SA. Finally, the passivation films can be optimized by using the mixture solution of PVA and SA materials.

Influence of Perfluorinated Polymer Passivation on AlGaN/GaN High-electron-mobility Transistors (질화갈륨계 고전자이동도 트랜지스터에 대한 불소계 고분자 보호막의 영향)

  • Jang, Soohwan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.511-514
    • /
    • 2010
  • Perfluorinated polymer($Cytop^{TM}$) was deposited on selective area of AlGaN/GaN HEMT structure using low cost and simple spin-coating method, and the electrical characteristics of the device was analyzed for application of passivation layer on semiconductors. Gate lag measurement results of $Cytop^{TM}$ passivated and unpassivated HEMT were compared. Passivated device shows improved 65 % pulsed drain current of dc mode value. Rf measurements were also performed. $Cytop^{TM}$ passivated HEMT have similar rf performance to PECVD grown $Si_3N_4$ passivated device. $Cytop^{TM}$ passivation layer may play an important role in mitigating surface state trapping in the region between gate and drain.

Characterization of Backside Passivation Process for Through Silicon via Wafer (TSV 웨이퍼 공정용 Si3N4 후막 스트레스에 대한 공정특성 분석)

  • Kang, Dong Hyun;Gu, Jung Mo;Ko, Young-Don;Hong, Sang Jeen
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.137-140
    • /
    • 2014
  • With the recent advent of through silicon via (TSV) technology, wafer level-TSV interconnection become feasible in high volume manufacturing. To increase the manufacturing productivity, it is required to develop equipment for backside passivation layer deposition for TSV wafer bonding process with high deposition rate and low film stress. In this research, we investigated the relationship between process parameters and the induced wafer stress of PECVD silicon nitride film on 300 mm wafers employing statistical and artificial intelligence modeling. We found that the film stress increases with increased RF power, but the pressure has inversely proportional to the stress. It is also observed that no significant stress change is observed when the gas flow rate is low.

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation (황화 암모늄을 이용한 Al2O3/HfO2 다층 게이트 절연막 트랜지스터 전기적 및 계면적 특성 향상 연구)

  • Kim, Jun-Gyu;Kim, Dae-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.266-269
    • /
    • 2020
  • In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.

Photoluminescence study in GaAs/AlGaAs multi-quantum well structure by hydrogen passivation (수소화 처리에 의한 GaAs/AIGaAs 다중양자우물의 PL 연구)

  • Park, Se-Ki;Lee, Cheon;Jung, Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.468-472
    • /
    • 1997
  • The effect of the surface state on the quantum efficiency of underlying GaAs/AlGaAs multi-quantum well(MQW) structures consisting of three GaAs quantum wells with different thickness, is studied by low temperature photoluminescence(PL). The structure was grown by molecular beam epitaxy(MBE) on (100) GaAs substrate. The thickness of three GaAs quantum wells was 3, 6 and 9 nm, respectively. The MQWs were placed apart from 50 nm AlGaAs edge-barriers including two inner-barriers with 15 nm in thickness. The samples used in this study were prepared with different growth temperatures. Particularly, the hydrogen passivation effect to the 9 nm quantum well located at near surface appeared much stronger than any others. Transition energy and optical gain related to the hydrogen passivation effects on the multi-quantum well structure was calculated by transfer matrix method.

  • PDF

A study on the Passivation film by Electrophoretic method using Borosilicate glasses (전기영동법을 이용한 붕규산계 유리의 Passivation막 연구)

  • Huh, Chang-Su;Park, In-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1642-1644
    • /
    • 1996
  • Passivation must prevent ionic charge movement on the surface of the junction, thereby minimizing the junction leakage and maximizing the breakdown voltage of the devices. Borosilicate glasses are widely used as surface passivants for such silicon power devices as thyristors, transistor, and diodes. Since these 91asses are electrically stable at high temperatures and in high electric fields, they can readily be applied as a thick film, and they are resistant to humidity and have low ionic mobility. A deposition technique of glass film on the silicon surface by electrophoresis in which acetone is used as a suspension medium has been investigated. The purpose of this paper is to describe electrophoretic deposition method for glass passivation and characteristics of glass films which were compared using DTA, SEM, XRD, as a function of firing temperature.

  • PDF