Browse > Article
http://dx.doi.org/10.46670/JSST.2020.29.4.266

Improvement of the carrier transport property and interfacial behavior in InGaAs quantum well Metal-Oxide-Semiconductor Field-Effect-Transistors with sulfur passivation  

Kim, Jun-Gyu (School of Electronics Engineering, Kyungpook National Unversity)
Kim, Dae-Hyun (School of Electronics Engineering, Kyungpook National Unversity)
Publication Information
Journal of Sensor Science and Technology / v.29, no.4, 2020 , pp. 266-269 More about this Journal
Abstract
In this study, we investigated the effect of a sulfur passivation (S-passivation) process step on the electrical properties of surface-channel In0.7Ga0.3As quantum-well (QW) metal-oxide-semiconductor field-effect transistors (MOSFETs) with S/D regrowth contacts. We fabricated long-channel In0.7Ga0.3As QW MOSFETs with and without (NH4)2S treatment and then deposited 1/4 nm of Al2O3/HfO2 through atomic layer deposition. The devices with S-passivation exhibited lower values of subthreshold swing (74 mV/decade) and drain-induced barrier lowering (19 mV/V) than the devices without S-passivation. A conductance method was applied, and a low value of interface trap density Dit (2.83×1012 cm-2eV-1) was obtained for the devices with S-passivation. Based on these results, interface traps between InGaAs and high-κ are other defect sources that need to be considered in future studies to improve III-V microsensor sensing platforms.
Keywords
High-k thin film transistor; Hafnium oxide($HfO_2$); Aluminum oxide($Al_2O_3$); Ammonium sulfide; Atomic layer deposition (ALD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. A. del Alamo, X. Cai, J. Lin, W. Lu, A. Vardi, and X. Zhao, "CMOS beyond Si: Nanometer-Scale III-V MOSFETs", 2017 IEEE Bipolar/BiCMOS Circuits Technol. Meet., pp. 26-29, Florida, United States, 2017.
2 C. B. Zota, C. Convertino, Y. Baumgartner, M. Sousa, D. Caimi, and L. Czornomaz, "High Performance Quantum Well InGaAs-On-Si MOSFETs With sub-20 nm Gate Length For RF Applications", 2018 IEEE Int. Electron Devices Meet., pp. 39.4.1-39.4.4, San Francisco, United States, 2018.
3 M. Yokoyama, N. Taoka, R. Suzuki, O. Ichikawa, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, "Sulfur cleaning for (100), (111)A, and (111)B InGaAs surfaces with In content of 0.53 and 0.70 and their Al2O3/InGaAs MOS interface properties", 2012 Int. Conf. on Indium Phosphide and Relat. Mater., pp. 167-170, Santa Barbara, United States, 2012.
4 F. Xue, A. Jiang, H. Zhao, Y.-T. Chen, Y. Wang, F. Zhou, and J. Lee, "Channel Thickness Dependence of InGaAs Quantum-Well Field-Effect Transistors With High- k Gate Dielectrics", IEEE Electron Device Lett., Vol. 33, No. 9, pp. 1255-1257, 2012.   DOI
5 S. Guha, V. Narayanan, V. Paruchuri, B. Linder, M. Copel, N. Bojarczuk, Y.-H. Kim, M. Chudzik, Y. Wang, P. Ronsheim, and E. Cartier, "Effects of gate-last and gate-first process on deep submicron inversion-mode InGaAs n-channel metal-oxide-semiconductor field effect transistors", J. Appl. Phys., Vol. 109, No. 5, pp. 053709(1)-053709(6), 2011.   DOI
6 S. Guha et al., "Charge Defects, Vt Shifts, and the Solution to the High-K Metal Gate n-MOSFET Problem," in ECS Transactions, 2006, Vol. 3, pp. 247-252.
7 J.-G. Kim, H.-M. Kwon, D.-H. Kim, and T.-W. Kim, "Impact of in situ atomic layer deposition TiN/high- κ stack onto In 0.53 Ga 0.47 As MOSCAPs on 300 mm Si substrate", Jpn. J. Appl. Phys., Vol. 58, No. 4, pp. 040905(1)-040905(4), 2019.
8 H. Tseng, Y. Fang, S. Zhong, and M. J. W. Rodwell, "InP MOSFETs Exhibiting Record 70 mV/dec Subthreshold Swing", 2019 Device Res. Conf., pp. 183-184, University of Michigan, United States, 2019.
9 R. Engel-Herbert, Y. Hwang, and S. Stemmer, "Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces," J. Appl. Phys., Vol. 108, No. 12, pp. 124101(1)-124101(15), 2010.   DOI