질화갈륨계 고전자이동도 트랜지스터에 대한 불소계 고분자 보호막의 영향

장 수 환[†]

단국대학교 화학공학과 448-701 경기도 용인시 수지구 죽전동 126 (2010년 3월 24일 접수, 2010년 4월 23일 채택)

Influence of Perfluorinated Polymer Passivation on AlGaN/GaN High-electron-mobility Transistors

Soohwan Jang[†]

Department of Chemical Engineering, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi 448-701, Korea (Received 24 March 2010; accepted 23 April 2010)

요 약

불소계 고분자 물질인 Cytop[™] 박막을 간단하고 경제적인 스핀코팅 방법을 이용하여 반도체 표면에 선택적으로 형 성시킨 후, AlGaN/GaN HEMT 소자의 반도체 보호막(passivation layer)으로써 활용가능성을 고찰하기 위하여 전기적 특성이 분석되었다. Cytop[™] 보호막이 적용된 AlGaN/GaN HEMT 소자와 적용되지 않은 소자의 게이트 래그 특성이 비교되었다. 보호막이 적용된 소자는 dc 대비 65%의 항상된 펄스 드레인 전류를 보였다. HEMT 소자의 rf 특성이 측 정되었으며, Cytop[™] 박막이 적용된 소자는 PECVE Si₃N₄ 보호막이 적용된 소자와 유사한 소자 특성을 나타냈다. 이 는 게이트와 드레인 사이에 존재하는 표면상태 트랩의 보호막에 의한 감소에 의한 것으로 판단된다.

Abstract – Perfluorinated polymer(CytopTM) was deposited on selective area of AlGaN/GaN HEMT structure using low cost and simple spin-coating method, and the electrical characteristics of the device was analyzed for application of passivation layer on semiconductors. Gate lag measurement results of CytopTM passivated and unpassivated HEMT were compared. Passivated device shows improved 65 % pulsed drain current of dc mode value. Rf measurements were also performed. CytopTM passivated HEMT have similar rf performance to PECVD grown Si₃N₄ passivated device. CytopTM passivation layer may play an important role in mitigating surface state trapping in the region between gate and drain.

Key words: AlGaN, GaN, HEMT, Passivation, Transister

1.서 론

AlGaN/GaN 고전자이동도 트랜지스터(HEMT: high electron mobility transistor)는 고출력 전기소자로써 산업계 및 국방, 우주개발 분야에서 많은 관심을 받고 있다. AlGaN/GaN 이종접합구조(heterostructure)는 AlGaN과 GaN의 큰 전도대 차이(conduction band offset) 및 분극에 의한 내부전기장(polarization induced electric field)으로 인해, AlGaN와 GaN의 계면에 2차원 전자 가스(2DEG: 2-dimensional electron gas)를 갖는다[1]. 분극에 의한 내부 전기장은 이종접합에 의한 격자상수의 불일치로 인한 압전효과 (strain induced piezoelectric effect)와 3족과 5족 원자의 자발적 분극(spontaneous polarization)에 기인한다[2]. 계 면의 2DEG는 외부의 불순물 주입(doping)없이도 높은 전하밀도와 전자이동도를 가능케 한다. 계면에서의 전자밀도(sheet electron density) 는 Al의 몰분율에 비례하며, 30% Al 농도에서 약 1.5×10¹³cm⁻²에 이 른다. 이 값은 일반적인 GaAs나 InP HEMT 구조의 전자밀도와 비 교했을 때, 매우 높은 값이라 할 수 있다[3].

소자의 빠른 속도와 안정성으로 인해, 최근에는 무선통신을 위한 기지국의 통신 소자 목적으로 활발한 연구가 진행되고 있다[4-6]. 그 러나, 질화갈륨계 HEMT는 드레인(drian)에 높은 전압을 인가하였을 경우 드레인 전류가 감소하는 현상을 보인다[7-12]. 이러한 현상은 전류붕괴(current collapse)라 불리며, 펄스 전압 측정 시 전류의 감소 와 rf 출력의 감소를 일으킨다. 전류붕괴의 원인으로는 반도체 표면 상태에 의한 트랩의 존재(surface states trapping) 혹은 전자 채널 밑 에 존재하는 완충막(buffer layer)에 트랩센터의 존재(buffer layer trapping)를 들 수 있다[13]. 완충막에서의 트랩센터는 박막성장 (epitaxial growth) 시의 조건을 최적화시켜 감소시킬 수 있다. 표면 상태의 트랩은 반도체 표면에 보호막(passivation layer)을 적용하여 줄일 수 있다. 표면의 트랩을 줄이기 위한 반도체 보호막으로는 PECVD(plasma enhanced chemical vapor deposition)을 이용한 Si₃N₄, MBE(molecular beam epitaxy)를 이용한 Sc₂O₃ 혹은 MgO이 연구되

[†]To whom correspondence should be addressed. E-mail: jangmountain@dankook.ac.kr

었으며 전류붕괴를 줄이기 위한 효과적 방법으로 제시되었다[14-17]. 그러나, 위의 물질은 초진공 상태에서 고가의 장비에 의한 증착을 요 한다.

본 연구에서는 불소계 고분자 물질인 CytopTM(Asahi Glass)을 간 단한 스핀코팅 방법을 이용하여 AlGaN/GaN HEMT에 보호 박막으 로 적용시킨 후, 소자의 전기적 특성을 측정함으로써 질화갈륨계 고 전자이동도 트랜지스터 보호막으로의 활용 여부를 고찰하였다.

2.실 험

c 방향 Al₂O₃ 기판 위에 MOCVD(metal organic chemical vapor deposition)를 이용하여 HEMT 구조의 AlGaN/GaN 박막이 증착되었 다. 각각 3 µm GaN 완충막, 도핑되지 않은 3 nm Al_{0.3}GaN, Si 도핑 (5×10¹⁸ cm⁻³)된 22 nm Al_{0.3}GaN, 도핑되지 않은 5 nm Al_{0.3}GaN 박 막이 성장되었다. 소자 사이의 분리를 위하여, Cl₂/Ar 가스를 이용하 여 ICP(inductively coupled plasma etching)에서 메사 패턴이 형성되 었다. 오믹(ohmic) 전극으로 Ti/Al/Pt/Au가 전자빔 증착(ebeam evaporator)을 이용하여 증착되었고, 포토리쏘그래피를 이용하여 패 턴이 형성되었다. 이후, 오믹 형성을 위하여 RTA(rapid thermal annealing)를 이용하여 900 ℃에서 30초간 제련(annealing)되었다. 쇼 트키 전극 형성을 위하여 Pt/Au가 전자빔 증착법에 의하여 증착되었 다. 반도체 보호막으로써 Asahi Glass의 Cytop809TM가 사용되었다. 5,000 rpm, 30 초에서 스핀코팅방법을 이용하여 200 nm의 Cytop™ 박막이 형성되었다. 90 ℃ 핫플래이트에서 90초간 가열된 후, 200 ℃ 오븐에서 1시간 동안 열처리되었다. 전압 인가 및 전류 측정을 위하 여, 금속 패드 부분이 O2 가스를 이용한 RIE(reactive ion etching)에 서 식각되었다. Agilent사의 4156C를 이용하여 소자의 dc와 펄스 측 정이 이루어졌으며, HP사의 8722C를 이용하여 rf 특성이 측정되었다.

3. 결과 및 고찰

Cytop[™]은 투명한 무정질(amorphous) 물질로 스핀코팅 방법을 이 용하여 쉽게 박막을 형성할 수 있는 화학적으로 매우 안정한 불소계 고분자 물질이다[18]. 반도체 표면의 보호막으로 사용되어 지기 위 해선 보호막의 선택적 영역의 증착 혹은 선택적 영역의 에칭이 필수 적이라 할 수 있다. 열처리 후 Cytop[™] 박막은 화학적으로 매우 안

Fig. 2. Optical micrograph of RIE patterned CytopTM (left), and SEM image of etched CytopTM (right).

Fig. 3. Gate lag measurements on unpassivated and CytopTM passivated HEMTs (1.2×200 μ m² gate). V_G was switched from -4.5 to 0 V.

정하므로 습식식각보다는 건식식각을 통한 에칭이 가능하다. Fig. 1 은 CytopTM과 일반적인 포토래지스트(S1818, Shipley)의 O₂가스를 이용한 RIE에서의 에칭 속도를 RIE 소스 출력에 따라 나타냈다. 80 W 의 조건에서 CytopTM과 포토래지스트의 에칭속도는 각각 99.7, 40.3Å/s로 약 2.5배의 차이가 난다. 이러한 차이는 포토래지스트를 CytopTM에 대한 애치마스크로 사용하기에 충분한 차이며, 반도체 표 면의 선택적 CytopTM 코팅을 가능케 한다(Fig. 2 참조).

반도체 표면 상태 트랩에 대한 보호막으로서의 효과를 측정하기 위하여, Cytop[™]으로 코팅된 소자와 코팅되지 않은 소자의 게이트 래그(gate lag)가 측정되었다. 이 측정 방법에서는 게이트의 펄스 전 압(V_G)에 따른 드레인 전류(I_{DS})를 측정함으로써 상대적인 표면 상 태 트랩의 정도를 파악할 수 있다[11]. Fig. 3은 Cytop[™] 보호막이 적용된 소자와 보호막이 적용되지 않은 소자의 드레인 전압(Vns)에 따른 드레인 전류를, Fig. 4는 게이트 전압에 따른 드레인 전류를 dc 및 펄스 모드에 대해서 나타내었다. Fig. 3의 경우 V_G는 -4.5 V에서 0 V까지 변화되었으며, Fig. 4에서는 -4.5 V에서 x축의 값까지 변화 되었다. 이 때, 열에 의한 드레인 전류의 감소 영향(heating effect)을 최소화하기 위하여 V_{DS}는 4 V로 유지되었다. 각각의 경우 1 MHz와 10%의 펄스 폭(duty cycle)에서 측정이 이루어졌다. 반도체 보호막 이 없는 소자의 경우, dc와 펄스 측정시 큰 드레인 전류의 차이를 보 이며 드레인 전류가 크게 감소하는 것을 볼 수 있다. 이는 게이트와 드레인 사이에 존재하는 표면 상태(states)에 의해 2DEG 채널이 공 핍(depletion)되어 나타나는 현상으로 볼 수 있다[19,20]. 반면에 Cytop[™]으로 보호막이 코팅된 소자는 드레인 펄스 전류가 dc 대비 65%까지 상대적으로 증가하였음을 알 수 있다. 이는 Cytop[™] 코팅

Fig. 4. Gate lag measurements on unpassivated and CytopTM passivated HEMTs ($1.2 \times 200 \ \mu m^2$ gate). V_G was switched from -4.5 V to the value shown on the x axis.

Fig. 5. rf performance of Si_3N_4 (top) and CytopTM (top) passivated HEMT at fixed gate voltage of -2 V.

을 통하여 반도체 표면의 트랩상태가 많이 감소하였음을 의미한다. Fig. 5에 cytop[™] 보호막이 적용된 소자의 고주파 rf 성능이 나타 나 있으며, 일반적인 AlGaN/GaN HEMT에 대한 보호막으로 널리 쓰이는 PECVD로 증착된 Si₃N₄ 보호막이 적용된 소자의 특성과 비 교되었다. 1.2×200 μm² 크기의 게이트가 사용되었으며, 두 소자 모 두 f₇(cutoff frequency)와 f_{max}(maximum oscillation frequency) 값으 로 약 5.4 GHz, 12 GHz로 유사한 값을 보였다. 소자의 rf 특성에 있 어서도 Cytop[™] 보호막은 PECVD Si₃N₄ 보호막 대비 취약하지 않 는 결과를 나타냈다.

4. 결 론

상대적으로 간단하며 경제적인 스핀코팅 방법을 이용한 불소계 고 분자 물질인 Cytop[™] 박막은 RIE를 사용하여 반도체 표면의 원하는 부분에 선택적인 코팅이 가능하며, 반도체의 표면상태 트랩을 감소 시키기 위한 보호막으로 사용될 수 있다. 게이트 래그 측정에서 보 호막이 없는 소자 대비 크게 향상된 AlGaN/GaN HEMT 소자의 특 성을 나타내었으며, Rf 측정에서도 PECVE로 증착된 Si₃N₄과 유사 한 고주파 성능을 보였다.

참고문헌

- Wu, Y.-F., Kapolnek, D., Ibbetson, J. P., Parikh, P., Keller, B. P. and Mishra, U. K., "Very-high Power Density AlGaN/GaN HEMTs," *IEEE Trans. Electron Devices.*, 48, 586(2001).
- Nguyen, C. and Micovic, M., "The State-of-the-art of GaAs and InP Power Devices and Amplifiers", *IEEE Trans. Electron Devices.*, 48, 472(2001).
- Morkoc, H., Cingolani, R. and Gil, B., "Polarization Effects in Nitride Semiconductor Device Structures and Performance of Modulation Doped Field Effect Transistors", *Solid-State Electron.*, 43, 1909(1999).
- Huang, J.-C., Hsu, H.-T., Chang, E.-Y., Lu, C.-Y., Chang, C.-T., Kuo, F.-Y., Chen, Y.-C. and Hsu, T.-H., "Linearity Characteristics of Field-Plated AlGaN/GaN High Electron Mobility Transistors for Microwave Applications," *JJAP*, 49, 014103(2010).
- Hasegawa, H. and Akazawa, M., "Hydrogen Sensing Characteristics and Mechanism of Pd/AlGaN/GaN Schottky Diodes Subjected to Oxygen Gettering," J. Vac. Sci. Technol., B 27, 2048(2009).
- Liu, Z. H., Ng, G. I. and Arulkumaran, S., "Mechanism of Increased High-Frequency Channel Noise With PECVD SiN Passivation in AlGaN/GaN HEMTs," *IEEE Elctron Device Lett.*, 30, 1122(2009).
- Fatima, T. H., Hu, X., Zhang, J. P., Simin, G., Khan, M. A., Shur, M. S. and Gaska, R., "Large-signal Linearity in III-N MOSDH-FETs," *IEEE Electron Device Lett.*, 24, 369(2003).
- Simin, G., Koudymov, A., Fatima, H., Zhang, J., Yang, J., Khan, M.A., Hu, X., Tarakji, A., Gaska, R. and Shur, M. S., "SiO(2)/ AlGaN/InGaN/GaN MOSDHFETs", *IEEE Electron Device Lett.*, 23, 458(2002).
- Rajan, S., Xing, H., Jena, D., DenBaars, S. P. and Mishra, U. K., "AlGaN/GaN Polarization-doped Field-effect Transistor for Microwave Power Applications," *Appl. Phys. Lett.*, 84, 1591(2004).
- Hu, X., Koudymov, A., Simin, G., Yang, J., Khan, M. A., Tarakji, A., Shur, M. S. and Gaska, R., "Si3N4/AlGaN/GaN-metalinsulator-semiconductor Heterostructure Field-effect Transistors," *Appl. Phys. Lett.*, **79**, 2832(2001).
- Binari, S. C., Ikossi, K., Roussos, J. A., Kruppa, W., Park, D., Dietrich, H. B., Koleske, D. D., Wickenden, A. E. and Henry, R. L., "Trapping Effects and Microwave Power Performance in AlGaN/GaN HEMTs," *IEEE Trans. Electron Devices.*, 48, 465 (2001).

- Vetury, R., Zhang, N. Q., Keller, S. and Mishra, U. K., "The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs," *IEEE Elctron Device Lett.*, ED-48, 560 (2001).
- Kordoš, P., Bernát, J., Marso, M., Lüth, H., Rampazzo, F., Tamiazzo, G., Pierobon, R. and Meneghesso, G., "Influence of Gateleakage Current on Drain Current Collapse of Unpassivated GaN/ AlGaN/GaN High Electron Mobility Transistors," *Appl. Phys. Lett.*, 86, 253511(2005).
- Weimann, N. G., Manfra, M. J. and Wachtler, T., "Unpassivated AlGaN-GaN HEMTs with Minimal RF Dispersion Grown by Plasma-assisted MBE on Semi-insulating 6H-SiC Substrates," *IEEE Electron Device Lett.*, 24, 57(2003).
- Shen, L., Coffie, R., Buttari, D., Heikman, S., Chakraborty, A., Chini, A., Keller, S., DenBaars, S. P. and Mishra, U. K., "Highpower Polarization-engineered GaN/AlGaN/GaN HEMTs Without Surface Passivation," *IEEE Electron Device Lett.*, 25, 79(2004).
- 16. Shen, L., Coffie, R., Buttari, D., Heikman, S., Chakraborty, A., Chini, A., Keller, S., DenBaars, S. P. and Mishra, U. K., "Unpas-

sivated GaN/AlGaN/GaN Power High Electron Mobility Transistors with Dispersion Controlled by Epitaxial Layer Design," *J. Electron. Mater.*, **33**, 422(2004).

- Chu, R., Zhou, Y., Liu, J., Wang, D., Chen, K. J. and Lau, K. M., "AlGaN-GaN double-channel HEMTs," *IEEE Trans. Electron Devices.*, **52**, 438(2005).
- Granstrom, J., Swensen, J. S., Moon, J. S., Rowell, G., Yuen, J. and Heeger, A. J., "Encapsulation of Organic Light-emitting Devices Using a Perfluorinated Polymer," *Appl. Phys. Lett.*, **93**, 193304 (2008).
- Green, B. M., Chu, K. K., Chumbes, E. M., Smart, J. A., Shealy, J. R. and Eastman, L. F., "The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMTs," *IEEE Electron Device Lett.*, 21, 268(2000).
- 20. Binari, S. C., Ikossi-Anastasiou, K., Kruppa, W., Dietrich, H. B., Kelner, G., Henry, R. L., Koleske, D. D. and Wickenden, A. E., "Correlation of Drain Current Pulsed Response With Microwave Power Output in AlGaN/GaN HEMTs," *Mater. Res. Soc. Symp. Proc.*, **572**, 541(1999).