• Title/Summary/Keyword: low input voltage

Search Result 934, Processing Time 0.033 seconds

Novel Single-Stage Power Factor Correction AC/DC Converter with Low DC Link Voltage using New Magnetic Feedback Technique (새로운 마그네틱 피드백 기법을 이용하여 낮은 링크 전압을 갖는 새로운 단일 전력단 역률 개선 AC/DC 컨버터)

  • Choi E. S.;Yoon H. K.;Kim C. E.;Moon G. W.;Youn M. J.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.528-532
    • /
    • 2004
  • Novel single-stage power factor correction AC/DC converter with low DC link voltage using new magnetic feedback technique is proposed in this paper. The Proposed converter has high power factor, tight output voltage regulation and low link capacitor voltage less than 450V for all the load range through the universal input line. This converter has also no dead-zone in the input current, which is seen in the conventional converter using the previous magnetic feedback technique. In this paper, the analysis of operations and features of the proposed converter is provided, and the experimental results of 90W-prototype shows the low harmonic distortions satisfied with EN 61000-3-2 Class D, high power factor and low link voltage less than 450V.

  • PDF

DC-DC Converter for Low-Power Power Management IC (저-전력 전력 관리 회로를 위한 DC-DC 변환기)

  • Jeon, Hyeondeok;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.174-179
    • /
    • 2018
  • In this paper, design of high-efficiency DC-DC converter is presented for low-power PMIC (power management integrated circuit). As PMIC technologies for IoT and wearable devices have been continuously improved, high-efficiency energy harvesting schemes should be essential. Since the supply voltage resulting from energy harvesting is low and widely variable, design techniques to achieve high efficiency over a wide input voltage range are required. To obtain a constant switching frequency for wide input voltage range, frequency compensation circuit using supply-voltage variation sensing circuit is included. In order to obtain high efficiency performance at very low-power condition, accurate burst-mode control circuit was adopted to control switching operations. In the proposed DC-DC buck converter, output voltage is set to be 0.9V at the input voltage of 0.95~3.3V and maximum measured efficiency is up to 78% for the load current of 180uA.

A New Approach for Built-in Self-Test of 4.5 to 5.5 GHz Low-Noise Amplifiers

  • Ryu, Jee-Youl;Noh, Seok-Ho
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.355-363
    • /
    • 2006
  • This paper presents a low-cost RF parameter estimation technique using a new RF built-in self-test (BIST) circuit and efficient DC measurement for 4.5 to 5.5 GHz low noise amplifiers (LNAs). The BIST circuit measures gain, noise figure, input impedance, and input return loss for an LNA. The BIST circuit is designed using $0.18\;{\mu}m$ SiGe technology. The test technique utilizes input impedance matching and output DC voltage measurements. The technique is simple and inexpensive.

  • PDF

Dual Mode Boost Converter for Energy Harvesting (에너지 하베스팅을 위한 이중 모드 부스트 컨버터)

  • Park, Hyung-Ryul;Yeo, Jae-Jin;Roh, JeongJin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.573-582
    • /
    • 2015
  • This paper presents the design of dual mode boost converter for energy harvesting. The designed converter boosts low voltage from energy harvester through a startup circuit. When the voltage goes above predefined value, supplied voltage to startup circuit is blocked by voltage detector. Boost controller makes the boosted voltage into $V_{OUT}$. The proposed circuit consists of oscillator for charge pump, charge pump, pulse generator, voltage detector, and boost controller. The proposed converter is designed and fabricated using a $0.18{\mu}m$ CMOS process. The designed circuit shows that minimum input voltage is 600mV, output is 3V and startup time is 20ms. The boost converter achieves 47% efficiency at a load current of 3mA.

A Prototype Development of Personal Low-frequency Stimulator with Characteristic Analysis (개인용 저주파 자극기의 특성분석 및 Prototype개발)

  • Lee, Gi-Song;Lee, Dong-Ha;Yu, Jae-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.349-352
    • /
    • 2003
  • A personal low-frequency stimulator is a portable device to relax muscle pains of a person. The stimulator generates combined low-frequency pulses to be applied to pads attached to painful muscles. This paper reports a development of such device with its characteristic analyses. The major components of our stimulator are MCU, high-voltage generating circuit part, high-voltage switching circuit part, input switch part and display unit. High-voltage generating circuit is designed by using a boost converter circuit and allows user control of the output voltage. High-voltage switching circuit, controlled by MCU, generates output voltage to be applied to pads. Input switch part is composed of power supply, intensity selection, mode selection and memory. Display unit adopts a text LCD module to display modes, Intensity, output frequency and user set-up time. Our designed safety circuit, to protect human body from possible electric shock, slowly increases the output voltage to the selected output intensity. It continuously checks the output pulse shape and disable the output when dangerous pulses are detected. This paper also shows some experimental results.

  • PDF

Low Cost Power System Design for Plasma Display Panel(PDP)

  • Yoo, Kwang-Min;Lee, Jun-Young;Lim, Sung-Kyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.250-255
    • /
    • 2006
  • A low cost PDP sustain power supply is proposed based on flyback topology using Boundary Conduction Mode(BCM) to control input current regulation. This method guarantees DCM condition to regulate the input current harmonics under all load conditions. An excessive voltage stress due to the link voltage increase can be suppressed by removing link capacitor and adjusting transformer turns ratios, which makes it possible to be used for universal line applications. The proposed converter is tested with a 400W(200V-2A output) prototype circuit.

  • PDF

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

SVPWM controlled the Three-phase AC to DC Boost Converter for High Power Factor (SVPWM 방식의 3상 고역율 AC-DC Boost 컨버터)

  • Na, Jae-Hyeong;Lee, Jung-Hyo;Kim, Kyung-Min;Lee, Su-Won;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.327-331
    • /
    • 2008
  • The problems of power factor and harmonics are occurred in converter system which used to SCRs and diodes as power semiconductor devices IGBT was solved that problem, maintain the input line current with sinusoidal wave current of input power source voltage. In this paper, three phase AC to DC boost converter that operates with unity power factor and sinusoidal input currents is presented. The current control of the converter is based on the space vector PWM strategy with fixed switching frequency and the input current tracks the reference current within one sampling time interval. Space vector PWM strategy for current control was materialized as a digital control method. By using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the dc link.

  • PDF

A Constant $g_m$ Input Stage for Low Voltage Rail-to-Rail Operational Amplifier (일정 트랜스컨덕컨스 $g_m$를 갖는 저전압 Rail-to-Rail 연산증폭기의 입력단 회로의 설계)

  • 장일권;김세준송병근곽계달
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.791-794
    • /
    • 1998
  • This paper presents a constant gm input stagefor low-voltage rail-to-rail operational amplifier. A proposed scheme uses two current paths to keep sum of the biasing currents of the complimentary input pairs. The op amp was designed in a $0.8\mu\textrm{m},$ n-well CMOS, double-polysilicon and double-metal technology. This achieved in weak inversion. The circuit can operate in power supply voltage from 1.5V up to 3V. An open-loop gain, AV, was simulated as 84dB for 15pF load. An unit-gain frequency, fT was 10MHz.

  • PDF

A Study of Low-Voltage Low-Power Linear Transconductor (저전압 저전력 선형 트랜스컨덕터에 관한 연구)

  • 김동용;신희종;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.967-970
    • /
    • 1999
  • A novel linear transconductor for low-voltage low-power signal processing is proposed. The transconductor consists of a pnp differential-pair and a npn differential-pair which are biased by local negative feedback. The simulation results show that the transcondcutor with transconductance of 50 $mutextrm{s}$ has a linearity error of 0.05% and the power dissipation is 2.44 ㎽ over an input linear range from -2V to +2V at supply voltage $\pm$3V.

  • PDF