• Title/Summary/Keyword: low infrared emissivity

Search Result 21, Processing Time 0.029 seconds

Preparation and Characterization of Low Infrared Emissivity Bicomponent Fibers with Radar Absorbing Property (레이더 흡수특성이 있는 저적외선 방출 복합섬유의 제조 및 특성 연구)

  • Yu Bin;Qi Lu
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Heavy weight of the camouflage materials was always the main problem. To solve it, the low infrared emissivity fibers with the radar absorbing property (LIFR) were prepared. The low infrared emissivity fibers (LIF) were firstly melt-spun by co-extrusion of polypropylene (PP) and PP/various fillers master-batches using general conjugate spinning. The infrared emissivity of LW with AA and ZnO was decreased respectively compared with that of pure polypropylene fibers. The infrared emissivity of LIF with 15 wt% Al and 2 wt% ZnO in the sheath-part can reach 0.58. To improve LIF radar absorbing property, LIFR was prepared by filling the 50 wt% ferrite and bronze in the core-part of LIF. The radar absorbing efficacy of LIFR was good and the infrared emissivity was low. For the characterization, fiber electron intensity instrument and differential scanning calorimetry (DSC) were used for the analysis of mechanical properties, thermal and crystallization behavior of the spun-fibers. Scanning electron microscopy (SEM) was carried out to observe the particle distribution of the bicomponent fibers.

Analysis on Infrared Stealth Performance of Metal Nano-coating on Radome Surface (레이돔 표면에 금속 나노코팅을 적용한 적외선 저피탐 성능특성 연구)

  • Lee, Yongwoo;Chang, Injoong;Nam, Juyeong;Bae, Hyung Mo;Cho, Hyung Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.251-258
    • /
    • 2022
  • Infrared stealth technology used in aircraft is applied to reduce the infrared signal by controlling surface temperature and emissivity using internal heat sink, low emissivity material or metamaterial. However, there is one part of the aircraft where the use of this technology is limited, and that is the radome. Especially, radome should have transmittance for the specific radio frequency, therefore, common stealth technology such as emissivity control surfaces cannot be applied to radome surface. In this study, we developed metal nano-coating for infrared stealth which is applicable to radome surface. We designed slot-type pattern for frequency selective transmission in X-band, and also controlled thickness of metal nano-coating for long wavelength infrared emissivity control. As a result, our infrared stealth surface for radome has 93.2 % transmittance in X-band and various infrared emissivities from 0.17 to 0.57 according to nano-coatings thickness. Also, we analyzed infrared signature of radome through numerical simulation, and finally reduced contrast radiant intensity by 97.57 % compared to polyurethane surface.

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1 s.151
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.

Characterization of Amorphous In-Si-O Multilayer for Low Emissivity Applications (로이 응용을 위한 비정질 In-Si-O 다층구조 특성 평가)

  • Lee, Young Seon;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.483-485
    • /
    • 2014
  • Transparent amorphous In-Si-O (ISO)/Ag/In-Si-O (ISO) has been reported for low emissivity (low-e) applications. Effective Si doping into the $In_2O_3$ matrix led to a completely amorphous ISO film as well as a low resistivity and a high optical transmittance. The optical and electrical performances were examined by measuring transmittance with a UV-VIS spectrophotometer and resistivity with a Hall effect measurement. Consequently, low-e glass with ISO/Ag/ISO showed a high transparency in the visible region and low emissivity in the infrared region, indicating that ISO is a promising amorphous transparent electrode for low-e glass.

A Study on the Infrared Emission Properties and Freeze-thaw Resistance for Calcined Clay by Carburization Treatment (소성 점토의 침탄에 따른 동결융해 저항성 및 적외선 방사특성 연구)

  • Kim, Ki-Ho;Kim, Sang-Myoung;Kang, Byung-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.387-394
    • /
    • 2008
  • The Physical property changes of calcined clay by carburization were investigated studied. The carburization mechanism is the penetration of carbon which occurred during incomplete fuel combustion into crevice of clay structure. The experiments for elasticity and freeze-thaw resistance were conducted, and the results can be summarized as follows: Dynamic modulus of elasticity and also freeze-thaw resistance of calcined clay by carburization treatment increased more than 92% after testing 300 cycle, which was more improved than 88% of calcined clay. Therefore, it can decrease the possibility of winter-sowing, which is one the weakness of calcined clay. It is on the basis of the fact that the porosity of calcined clay by carburization treatment is about 12%, which indicates smaller pore spaces comparing with the 14% of porosity of calcined clay and those values were calculated by apparent porosity show and also supported by SEM images. Infrared emissivity of calcined clay by carburization treatment and calcined clay were respectively 0.92 and 0.9l at $80^{\circ}C$. However, those values were 0.91 and 0.88 at $200^{\circ}C$, which means infrared emissivity of calcined clay by carburization treatment shows 3.6% higher than the calcined clay. Moreover, within the wavelength range from 3 to $7\;{\mu}m$, while the calcined clay had low infrared emissivity, the calcined clay by carburization treatment had increased infrared emissivity. It is inferred that it was affected by carbon element that has high infrared absorptivity within this wavelength range.

Far Infra Red Emissivity of Five Korean Wood Species (한국산 5개 수종의 원적외선 방사율)

  • Lee, Hwa Hyoung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.1 s.129
    • /
    • pp.17-20
    • /
    • 2005
  • This research was carried out to examine the FIR (far-infrared rays) emissivity and emission power of five Korean wood species for proving wood as an amenity material. Wood turned out excellent as FIR material with 90~91% emissivity in the range of $5{\sim}20{\mu}m$ at $40^{\circ}C$. No difference was identified in the FIR emissivity and emission power between hardwood and softwood, diffuse porous wood and ring porous wood, and high-density wood and low-density wood respectively.

Low Emissivity Property of Amorphous Oxide Multilayer (SIZO/Ag/SIZO) Structure

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.13-15
    • /
    • 2017
  • Low emissivity glass for high transparency in the visible range and low emissivity in the IR (infrared) range was fabricated and investigated. The multilayers were have been fabricated, and consisted of two outer oxide layers and a middle layer of Ag as a metal layer. Oxide layers were formed by rf sputtering and metal layers were formed using by an evaporator at room temperature. SiInZnO (SIZO) film was used as an oxide layer. The OMO (oxide-metaloxide) structures of SIZO/Ag/SIZO were analyzed by using transmittance, AFM (atomic force microscopye), and XRD (X-ray diffraction). The OMO multilayer structure was designed to investigate the effect of Ag layer thickness on the optical property of the OMO structure.

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.

Effect of Annealing Temperature on the Low Emissivity of TiO2/Ag/TiO2 Films (열처리 온도에 따른 TiO2/Ag/TiO2 박막의 근적외선 반사 특성 변화)

  • Kim, So-young;Moon, Hyun-joo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.3
    • /
    • pp.134-138
    • /
    • 2015
  • Ag intermediated $TiO_2$ films were deposited by RF and DC magnetron sputtering and then vacuum annealed at 100, 200 and $300^{\circ}C$ for 30 minutes to investigate the effect of annealing temperature on the structural and optical properties of the films. For all depositions, the thickness of the $TiO_2$ and Ag films were kept constant at 24 and 15 nm by controlling the deposition time. As-deposited $TiO_2/Ag/TiO_2$ trilayer films have a weak crystalline and an optical reflectance in a near infrared wavelength region of 77.8%, while the films annealed at $300^{\circ}C$ show the polycrystalline structure and an increased mean optical reflectance of 80.4%. From the experimental results, it can be concluded that increasing the annealing temperature enhanced the structural and optical properties of the $TiO_2/Ag/TiO_2$ films.

Thermodynamics Consideration of Growth Mode of Silver Islands by Transition Metal Seeding (Nb seeding이 Ag 박막 성장모드에 미치는 영향에 대한 열역학적인 고찰)

  • Byon, Eung-Sun;Kim, Dong-Ho;Jeon, Sang-Jo
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.6-10
    • /
    • 2007
  • For low-emissivity application on window glass, coalescence of thin film silver islands is crucial for high transmittance in the visible and high reflectance in the infrared. It is well known that the underlayer affects the growth mode. In this work, the effect of the underlayer on the growth of silver films deposited by filtered cathodic vacuum arc is discussed. While a nominal 0.1 nm niobium underlayer has promoted the coalescence of silver islands, a 0.2 nm layer did not show these features. From a thermodynamic approach, Nb seeding less one monolayer is considered to reduce the surface energy between the silver atoms and $Nb/TiO_2$ surface, resulting the change of its growth from 3D islands to 2D-layer modes. If the seed layer exceeds one monolayer, however, a rougher surface is formed because the surface energy of Nb itself is superior to that of $Nb-TiO_2$. The onset of silver layer on the roughened Nb surface is required more silver.