• 제목/요약/키워드: low Ag

검색결과 821건 처리시간 0.039초

로이 응용을 위한 비정질 In-Si-O 다층구조 특성 평가 (Characterization of Amorphous In-Si-O Multilayer for Low Emissivity Applications)

  • 이영선;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.483-485
    • /
    • 2014
  • Transparent amorphous In-Si-O (ISO)/Ag/In-Si-O (ISO) has been reported for low emissivity (low-e) applications. Effective Si doping into the $In_2O_3$ matrix led to a completely amorphous ISO film as well as a low resistivity and a high optical transmittance. The optical and electrical performances were examined by measuring transmittance with a UV-VIS spectrophotometer and resistivity with a Hall effect measurement. Consequently, low-e glass with ISO/Ag/ISO showed a high transparency in the visible region and low emissivity in the infrared region, indicating that ISO is a promising amorphous transparent electrode for low-e glass.

저압차단기용 접점재료의 소모특성에 미치는 개리속도의 영향 (The Effect of Opening Velocity on the Arc Erosion of Contact Materials for Low-Voltage Circuit Breaker)

  • 연영명;박홍태;오일성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.632-635
    • /
    • 2004
  • The purpose of this paper is to investigate the effect of arc current and contact velocity on the erosion of silver-based contact materials to be used in low voltage circuit breakers. The opening velocity during breaking, which is constant, ranges between 2m/s to 6m/s in the 415V $25kA_{rms}$. Contact erosion is evaluated by measuring the mass change of the cathode and anode. The results show that the increase in opening velocity from 2m/s to 6m/s leads to a decrease in the contact erosion. It is shown that the material transfer from one electrode to another depends on the transfer charge and the opening velocity of the contacts. The contact pairs of AgWC/AgCdO are superior to $AgWC/AgSnO_2In_2O_3$ or AgWC/AgC contact pairs in the contact erosion.

  • PDF

Development of a Quadrivalent Combined DTaP-HepB Vaccine with a Low Toxicity and a Stable HBsAg Immunogenicity

  • Bae, Cheon-Soon;Park, Kwung-Nam;Ahn, Sang-Jeom;Kim, Jong-Su;Hur, Byung-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권5호
    • /
    • pp.787-792
    • /
    • 2002
  • When developing a combined DTaP-HepB vaccine, toxicity and HBsAg immunogenicity are both important considerations. Thus, for a combined DTaP-HepB vaccine with a low toxicity, the effect of the DTaP content and $Al(OH)_3$, gel concentration on the vaccine toxicity was investigated. Within the range studied, the higher the concentrations, the higher the vaccine toxicity. The importance of the tetanus toxoid content in the combined DTaP-HepB vaccine was also revealed. A higher concentration of the tetanus toxoid was found to have a negative effect on the stability of the HBsAg immunogenicity in the combined vaccine. Accordingly, considering the factors affecting toxicity and HBsAg immunogenicity, a novel DTaP-HepB vaccine (30 Lf/ml of diphtheria toxoid, 5 Lf/ml of tetanus toxoid, 10 $\mu\textrm{g}$ PN/ml of acellular pertussis, 24 $\mu\textrm{g}$/ml of HBsAg, and 500 $\mu\textrm{g}$ Al/ml of $Al(OH)_3$ gel) was developed. It has a low toxicity and a stable HBsAg immunogenicity and also satisfies the potency criteria of K-FDA for a combined DTaP vaccine.

Enhanced Infrared detection of photodetector using Ag nanowire-embedded ITO Layers

  • 김홍식;김준동;;김자연;권민기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.244.1-244.1
    • /
    • 2015
  • The Ag Nanowire is one of the materials that are widely studied as alternatives to ITO and is available for large area, low cost process and the flexible transparent electrode. However, Ag nanowire can have the problem of a lack of stability at high temperatures, making this impossible to form a film. Using a structure of ITO/AgNW/ITO in photodetector device, we improved the properties of the ITO in the IR region and improved the thermal stability of the AgNW. The structure of ITO/AgNW/ITO has a high transmittance value of 89% at a wavelength of 900 nm and provide a good electrical property. The AgNWs embedded ITO film has a high transmittance, this is because of the light scattering from the AgNW. The thermal stability of the developed ITO/AgNWs/ITO films were investigated and found AgNWs embedded ITO films posses considerable high stability compared to the solo AgNWs on the Si surface. The ITO/AgNWs/ITO device showed a improved photo-response ratio compared to those of the conventional TC device in IR region. This is attributed to the high transmittance and low sheet resistance. We suggest an effective design scheme for IR-sensitive photodetection by using an AgNW embedded ITO.

  • PDF

Transparent Conducting Multilayer Electrode (GTO/Ag/GTO) Prepared by Radio-Frequency Sputtering for Organic Photovoltaic's Cells

  • Pandey, Rina;Kim, Jung Hyuk;Hwang, Do Kyung;Choi, Won Kook
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.219-223
    • /
    • 2015
  • Indium free consisting of three alternating layers GTO/Ag/GTO has been fabricated by radio-frequency (RF) sputtering for the applications as transparent conducting electrodes and the structural, electrical and optical properties of the gallium tin oxide (GTO) films were carefully studied. The gallium tin oxide thin films deposited at room temperature are found to have an amorphous structure. Hall Effect measurements show a strong influence on the conductivity type where it changed from n-type to p-type at $700^{\circ}C$. GTO/Ag/GTO multilayer structured electrode with a few nm of Ag layer embedded is fabricated and show the optical transmittance of 86.48% in the visible range (${\lambda}$ = 380~770 nm) and quite low electrical resistivity of ${\sim}10^{-5}{\Omega}cm$. The resultant power conversion efficiency of 2.60% of the multilayer based OPV (GAG) is lower than that of the reference commercial ITO. GTO/Ag/GTO multilayer is a promising transparent conducting electrode material due to its low resistivity, high transmittance, low temperature deposition and low cost components.

Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술 (High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure)

  • 최진석;안성진
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.1-7
    • /
    • 2020
  • The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

The Change of Energy Band Gap and Transmittance Depending on Ag Thinkness of IGZO, ZnO, AZO OMO

  • 이승민;김홍배;이상렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.340.1-340.1
    • /
    • 2014
  • 본 실험에서는 Ag두께 변화에 따른 투과율과 Energy bandgap의 변화를 알아보기 위해 RF Sputter장비와 Evaporator장비를 사용하여 IGZO, ZnO, AZO OMO 구조로 Low-e 코팅된 Glass를 제작하였다. $3cm{\times}3cm$의 Corning1737 유리기판에 RF Sputtering 방식으로 Oxide layer를 증착 하였고 Evaporator장비로는 Metal layer인 Ag막을 증착하였다. Oxide layer 증착 시 RF Sputter장비의 조건은 $3.0{\times}10^{-6}Torr$이하로 하였으며, 증착압력은 $6.0{\times}10^{-3}Torr$, 증착온도는 실온으로 고정하였다. Metal layer 증착 시 Evaporator장비의 조건은 $5.0{\times}10^{-6}Torr$이하, 전압은 0.3 V, Rotate 2 rpm으로 고정하였다. 실험 변수로는 Ag 두께를 5,7,9,11,13 nm로 변화를 주어 실험을 진행하였다. 투과도 측정 장비를 사용하여 각 샘플을 측정한 결과 IGZO의 경우 가시광영역의 평균 투과율이 80% 이상이며 Ag두께가 5nm일 때부터 자외선 영역의 빛을 차단하여 low-e 특성을 나타내었다. 이는 산화물인 IGZO가 결정질인 AZO, ZnO 보다 낮은 표면거칠기를 가지기 때문이다. Ag 두께에 따른 각 물질의 Optical energy bandgap 분석결과 Ag 두께가 증가할수록 IGZO는 4.65~4.5 eV, AZO는 4.6~4.4 eV, ZnO는 4.55~4.45 eV로 Energy bandgap은 감소하였다. AFM장비를 이용하여 각 샘플의 표면 Roughness 측정 결과 Ag 두께가 증가할수록 표면거칠기도 증가하는 경향을 나타내었다.

  • PDF

투명 유전체 (PbO-B2O3-SiO2-Al2O3 계)와 Ag 전극과의 반응에 의한 Ag+과 Sn2+의 거동 (Behavior of Ag+ and Sn2+ After Reaction Between the Transparent Dielectric PbO-B2O3-SiO2-Al2O3 and Ag Electrodes)

  • 홍경준;박준현;허증수;김형준
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.347-352
    • /
    • 2002
  • A transparent dielectric of the $PbO-B_2O_3-SiO_2-A1_2O_3$ system which was a low melting glass has been used for PDP (Plasma Display Panel), but it has a problem which is a reaction to be occurred between a transparent dielectric layer and electrodes (Ag, ITO) after firing. This research was conducted for ion migration of $Ag^+\$ and $Sn^ {2+}$ during firing three different frits of low melting glass. The result showed that yellowing phenomena occurred through a chemical reaction between $Ag^+\$and $Sn^ {2+}$ at 550~58$0^{\circ}C$ for 20~60 min. In addition, it was confirmed that the migration of $Sn^{2+}$ from ITO electrode made a strong effect on the yellowing phenomena.

Cu-16 at % Ag 미세복합재료의 미세구조와 전도도 (Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite)

  • 임문수;안장호;홍순익
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.569-576
    • /
    • 1999
  • In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K($\rho$\ulcorner/$\rho$\ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.

  • PDF