Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.1.001

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure  

Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.1, 2020 , pp. 1-7 More about this Journal
Abstract
The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).
Keywords
backside metallization; die attach; Ag/Sn/Ag sandwich structure; high-temperature semiconductor; soldering;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 N. P. Kim and R. F. Cooley, "Wafer back metallization for semiconductor packaging", Thin Solid Films, 153(1-3), 447 (1987).   DOI
2 G. Ghosh, "Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints", Acta Mater., 49(14), 2609 (2001).   DOI
3 N. Saunders and A. P. Miodownik, "The Cu-Sn (Copper-Tin) system", Bulletin of Alloy Phase Diagrams, 11, 278 (1990).   DOI
4 I. Karakaya and W. T. Thompson, "The Ag-Sn (Silver-Tin) system", Bulletin of Alloy Phase Diagrams, 8, 340 (1987).   DOI
5 A. Lis, M. S. Park, R. Arroyave, and C. Leinenbach, "Early stage growth characteristics of $Ag_3Sn$ intermetallic compounds during solid-solid and solid-liquid reactions in the Ag-Sn interlayer system: Experiments and simulations", J. Alloys Compd., 617, 763 (2014).   DOI
6 M. S. Park and R. Arroyave, "Concurrent nucleation, formation and growth of two intermetallic compounds ($Cu_6Sn_5$and $Cu_3Sn$) during the early stages of lead-free soldering", Acta Mater., 60(3), 923 (2012).   DOI
7 J. Choi, G. S. Choi, and S. J. An, "Reliable low-temperature die attach process using Ag/Sn/Ag sandwich structure for high-temperature semiconductor devices", Sci. Rep., 9(1), 1 (2019).   DOI
8 S. Annuar, R. Mahmoodian, M. Hamdi, and K. -N. Tu, "Intermetallic compounds in 3D integrated circuits technology: brief review", Sci. Technol. Adv. Mater., 18(1), 693 (2017).   DOI
9 L. Yin and P. Borgesen, "On the root cause of Kirkendall voiding in $Cu_3Sn$", J. Mater. Res., 26(3), 455 (2011).   DOI
10 J. Y. Kim and J. Yu, "Effects of residual impurities in electroplated Cu on the Kirkendall void formation during soldering", Appl. Phys. Lett., 92, 092109 (2008).   DOI
11 J. Yu and J. Y. Kim, "Effect of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints", Acta Materl., 56(19), 5514 (2008)   DOI
12 S. W. Yoon, M. D. Glover, and K. Shiozaki, "Nickel-Tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles", IEEE Trans. Power Electron., 28(5), 2448 (2013).   DOI
13 R. Khazaka, L. Memdizabal, D. Hevry, and R. Hanna, "Survey of High-Temperature Reliability of Power Electronics Packaging Components", IEEE Trans. Power Electron., 30(5), 2456 (2015).   DOI
14 D.-H. Jung, M.-H. Roh, J.-H. Lee, K.-H Kim, and J. P. Jang, "Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation", J. Microelectron. Packag. Soc., 24(1), 17 (2017).   DOI
15 V. Chidambaram, J. Hald, and J. Hattel, "Development of Au-Ge based candidate alloys as an alternative to high-lead content solders", J. Alloys Compd., 490(1-2), 170 (2010).   DOI
16 J.-H. Lee, D.-H. Jung, and J. P. Jung, "Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging", 25(4), 9 (2018).   DOI
17 A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and S. Muchlejohn, "Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering", J. Mater. Eng. Perform., 21(5), 629 (2012).   DOI
18 G. Zeng, S. McDonald, and K. Nogita, "Development of hightemperature solders: Review", Microelectron. Reliab., 52(7), 1306 (2012).   DOI
19 L. S. Pei, B. Pan, H. Zhang, W. Ng, B. Wu, K. S. Siow, S. Sabne, and M. Tsuriya, "High-Temperature Pb-Free Die Attach Material Project Phase 1: Survey Result", Proc. International Conference on Electronics Packaging (ICEP), Yamagata, 16932449, IEEE (2017).
20 V. R. Manikam and K. Y. Cheong, "Die Attach Materials for High Temperature Applications: A Review, Components, Packaging and Manufacturing Technology", IEEE Trans. Compon. Packag. Manuf. Technol., 1(4), 457 (2011).   DOI
21 J. N. Lalena, N. F. Dean, and M. W. Weiser, "Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment", J. Electron. Mater., 31, 1244 (2002).   DOI
22 J.-M. Song, H.-Y. Chuang, and Z.-M. Wu, "Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates", J. Electron. Mater., 35, 1041 (2006).   DOI
23 M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, "Zn-Al based alloys as Pb-free solders for die attach" J. Electron. Mater., 31, 278 (2002).   DOI
24 T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, "Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use", J. Electron. Mater., 28, 1172 (1999).   DOI
25 S. Kim, K.-S. Kim, S.-S. Kim, and K. Suganuma, "Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders", J. Electron. Mater., 38, 266 (2009).   DOI
26 S. Krishnan, A. S. M. A. Haseeb, and M. R. Johan, "Preparation and Low-Temperature Sintering of Cu Nanoparticles for High-Power Devices", IEEE Trans. Compon. Packag. Manuf. Technol., 2(4), 587 (2012).   DOI
27 J.-E. Lee, K.-S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, "Interfacial Properties of Zn-Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate", Mater. Trans., 46(11), 2413 (2005).   DOI
28 T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", J. Electron. Mater., 36(10), 1333 (2007).   DOI
29 H. Yu, L. Li, and Y. Zhang, "Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications", Scr. Mater., 66(11), 931 (2012).   DOI
30 S. W. Yoon, M. D. Glover, H. A. Mantooth, and K. Shiozaki, "Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles", J. Micromech. Microeng., 23(1), 015017 (2013).   DOI
31 T. A. Tollefsen, A. Larsson, O. M. Lovvik, and K. E. Aasmundtveit, "High Temperature Interconnect and Die Attach Technology: Au-Sn SLID Bonding", IEEE Trans. Compon. Packag. Manuf. Technol., 3(6), 904 (2013).   DOI
32 L. Bernstein, "Semiconductor Joining by the Solid-Liquid- Interdiffusion (SLID) Process: I. The Systems Ag-In, Au-In, and Cu-In", J. Electrochem. Soc., 113(12), 1282 (1966).   DOI