Microstructure and Electrical Conductivity of Cu-16 at % Ag Microcomposite

Cu-16 at % Ag 미세복합재료의 미세구조와 전도도

  • Published : 1999.06.01

Abstract

In this study, the effect of the microstructural evolution on the electrical of Cu-Ag microcomposite was investigated. The nature of interfaces between silver filaments and Cu matrix may have pronounced effects on the physical properties of Cu-Ag filamentary microcomposites, little is known about these interfaces. In heavily drawn Cu-Ag filamentary microcomposities, the microstructure is too fine and the interfacial area is too large to maintsin a stable internal dislocation structure because of closely spaced filaments. Rather, most dislocations are thought to be gradually absorbed at the interfaces as the draw ratio increases. The mechanical and electrical properties of Cu-Ag filamentary microcomposites wires were also examined and correlated with the microstructural change caused by thermomechanical treatments. The study on the electrical conductivity combined to resistivity in Cu-Ag filamentary microcomposites and the rapid increase of the electrical conductivity at high annealing temperatures is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities is mainly caused by the dissolution and coarsening of silver filaments. The relatively low ratio of the resistivities at 295K($\rho$\ulcorner/$\rho$\ulcorner) in as-drawn Cu-Ag microcomposites can also be explained by the contribution of the interface scattering.

Keywords

References

  1. Acta Mater. v.46 S.I. Hong;M.A. Hill
  2. Mater. Sci. Eng. v.168A D. Dew-Hughes
  3. Physica B R. Gersdorf;L.W. Roeland;W.C.M. Mattens
  4. Int'l J. Appl. Electomagnetics in Materials v.1 S. Foner
  5. Acta Metall. Mater. v.43 S.I. Hong;M.A. Hill;Y. Sakai;J.T. Wood;J.D. Embury
  6. Appl. Phys. Lett. v.59 Y. Sakai;K. Inoue;T. Asano;H. Wada;H. Maeda
  7. Scripta Metall v.23 W.A. Spitzig
  8. Acta Metall v.23 G. Frommeyer;G. Wassermann
  9. Acta Metall. Mater. v.45 A. Benghalem;D.G. Morris
  10. Acta Metall. Mater. v.45 Y. Sakai;H. J Schneider-Muntau
  11. Acta Metall. v.40 S.I. Hong;G.T. GrayⅢ
  12. Mater. Sci. Eng. v.164A H.G.F. Wilsdorf;D. Kuhlmann-Wilsdorf
  13. Mater. Sci. Eng. v.128A S.I. Hong;C. Laird
  14. Acta Metall. v.38 S.I. Hong;C. Laird
  15. Electron Microscopy of Thin Crystals P. Hirsch;A. Howie;R.B. Nicholson;D.W. Pashley;M.J. Whelan
  16. Acta Mater. v.45 J.B. Correia;H.A. Davies;C.M. Sellars
  17. Scripta Met. v.24 W.A. Spitzig;J.D. Verhoeven;C.L. Trybus;L.S. Chumbly
  18. Scripta Met. v.24 W.A. Spitzig;J.D. Verhoeven;C.L. Trybus;L.S. Chumbly
  19. Acta Metall. Mater. v.39 W.A. Spitzig
  20. Scripta Met. v.23 P.D. Funkenbusch;T.H. Courtney
  21. Met. Trans. A v.18A P.D. Funkenbusch;J.K. Lee;T.H. Courtney
  22. Scripta Met. v.24 P.D. Funkenbusch;T.H. Courtney
  23. Mater. Sci. Eng. v.63 S. Horibe;J.K. Lee;C. Laird
  24. Acta Metall. v.37 V. Gerold;H.P. Karnthaler
  25. J. Appl. Phys. v.65 J.D. Verhoeven;H.L. Downing;L.S. Chumbley;E.D. Gibson
  26. Metall. Trans. v.24A G.A. Jerman;I.E. Anderson;J.D. Verhoeven
  27. J. Appl. Phys. v.52 K.R. Karasek;J. Bevk
  28. Ultramicroscopy v.22 A.R. Pelton;F.C. Laabs;W.A. Spizig;C.C. Cheng
  29. Prog. Mater. Sci. v.25 J. Gil Sevillano;P. van Houtte;E. Hernoudt
  30. Mater. Sci. Eng. v.86 J. Gil Sevillano;E. Hernoudt
  31. Phus. Stat. Sol. A v.27 G. Frommeyer;G. Wassermann
  32. Metall. Trans. v.24A T.W. Ellis;L.E. Anderson;H.L. Downing;J.D. Verhoeven
  33. Metall. Trans. v.24A W.A. Spitzig;H.L. Dowing;F.C. Laabs;E.D. Gibson;J.D. Verhoeven
  34. Physics of Engineering Materials v.220 D.D. Pollock