DOI QR코드

DOI QR Code

High-temperature Semiconductor Bonding using Backside Metallization with Ag/Sn/Ag Sandwich Structure

Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술

  • Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2019.11.29
  • Accepted : 2020.03.25
  • Published : 2020.03.30

Abstract

The backside metallization process is typically used to attach a chip to a lead frame for semiconductor packaging because it has excellent bond-line and good electrical and thermal conduction. In particular, the backside metal with the Ag/Sn/Ag sandwich structure has a low-temperature bonding process and high remelting temperature because the interfacial structure composed of intermetallic compounds with higher melting temperatures than pure metal layers after die attach process. Here, we introduce a die attach process with the Ag/Sn/Ag sandwich structure to apply commercial semiconductor packages. After the die attachment, we investigated the evolution of the interfacial structures and evaluated the shear strength of the Ag/Sn/Ag sandwich structure and compared to those of a commercial backside metal (Au-12Ge).

Keywords

References

  1. R. Khazaka, L. Memdizabal, D. Hevry, and R. Hanna, "Survey of High-Temperature Reliability of Power Electronics Packaging Components", IEEE Trans. Power Electron., 30(5), 2456 (2015). https://doi.org/10.1109/TPEL.2014.2357836
  2. D.-H. Jung, M.-H. Roh, J.-H. Lee, K.-H Kim, and J. P. Jang, "Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation", J. Microelectron. Packag. Soc., 24(1), 17 (2017). https://doi.org/10.6117/kmeps.2017.24.1.017
  3. J.-H. Lee, D.-H. Jung, and J. P. Jung, "Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging", 25(4), 9 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.009
  4. A. Kroupa, D. Andersson, N. Hoo, J. Pearce, A. Watson, A. Dinsdale, and S. Muchlejohn, "Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering", J. Mater. Eng. Perform., 21(5), 629 (2012). https://doi.org/10.1007/s11665-012-0125-3
  5. G. Zeng, S. McDonald, and K. Nogita, "Development of hightemperature solders: Review", Microelectron. Reliab., 52(7), 1306 (2012). https://doi.org/10.1016/j.microrel.2012.02.018
  6. L. S. Pei, B. Pan, H. Zhang, W. Ng, B. Wu, K. S. Siow, S. Sabne, and M. Tsuriya, "High-Temperature Pb-Free Die Attach Material Project Phase 1: Survey Result", Proc. International Conference on Electronics Packaging (ICEP), Yamagata, 16932449, IEEE (2017).
  7. V. R. Manikam and K. Y. Cheong, "Die Attach Materials for High Temperature Applications: A Review, Components, Packaging and Manufacturing Technology", IEEE Trans. Compon. Packag. Manuf. Technol., 1(4), 457 (2011). https://doi.org/10.1109/TCPMT.2010.2100432
  8. V. Chidambaram, J. Hald, and J. Hattel, "Development of Au-Ge based candidate alloys as an alternative to high-lead content solders", J. Alloys Compd., 490(1-2), 170 (2010). https://doi.org/10.1016/j.jallcom.2009.10.108
  9. J. N. Lalena, N. F. Dean, and M. W. Weiser, "Experimental investigation of Ge-doped Bi-11Ag as a new Pb-free solder alloy for power die attachment", J. Electron. Mater., 31, 1244 (2002). https://doi.org/10.1007/s11664-002-0016-8
  10. J.-M. Song, H.-Y. Chuang, and Z.-M. Wu, "Interfacial reactions between Bi-Ag high-temperature solders and metallic substrates", J. Electron. Mater., 35, 1041 (2006). https://doi.org/10.1007/BF02692565
  11. M. Rettenmayr, P. Lambracht, B. Kempf, and C. Tschudin, "Zn-Al based alloys as Pb-free solders for die attach" J. Electron. Mater., 31, 278 (2002). https://doi.org/10.1007/s11664-002-0144-1
  12. T. Shimizu, H. Ishikawa, I. Ohnuma, and K. Ishida, "Zn-Al-Mg-Ga alloys as Pb-free solder for die-attaching use", J. Electron. Mater., 28, 1172 (1999). https://doi.org/10.1007/s11664-999-0153-4
  13. S. Kim, K.-S. Kim, S.-S. Kim, and K. Suganuma, "Interfacial Reaction and Die Attach Properties of Zn-Sn High-Temperature Solders", J. Electron. Mater., 38, 266 (2009). https://doi.org/10.1007/s11664-008-0550-0
  14. J.-E. Lee, K.-S. Kim, K. Suganuma, J. Takenaka, and K. Hagio, "Interfacial Properties of Zn-Sn Alloys as High Temperature Lead-Free Solder on Cu Substrate", Mater. Trans., 46(11), 2413 (2005). https://doi.org/10.2320/matertrans.46.2413
  15. T. Wang, X. Chen, G.-Q. Lu, and G.-Y. Lei, "Low-Temperature Sintering with Nano-Silver Paste in Die-Attached Interconnection", J. Electron. Mater., 36(10), 1333 (2007). https://doi.org/10.1007/s11664-007-0230-5
  16. H. Yu, L. Li, and Y. Zhang, "Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications", Scr. Mater., 66(11), 931 (2012). https://doi.org/10.1016/j.scriptamat.2012.02.037
  17. S. Krishnan, A. S. M. A. Haseeb, and M. R. Johan, "Preparation and Low-Temperature Sintering of Cu Nanoparticles for High-Power Devices", IEEE Trans. Compon. Packag. Manuf. Technol., 2(4), 587 (2012). https://doi.org/10.1109/TCPMT.2012.2189208
  18. S. W. Yoon, M. D. Glover, H. A. Mantooth, and K. Shiozaki, "Reliable and repeatable bonding technology for high temperature automotive power modules for electrified vehicles", J. Micromech. Microeng., 23(1), 015017 (2013). https://doi.org/10.1088/0960-1317/23/1/015017
  19. T. A. Tollefsen, A. Larsson, O. M. Lovvik, and K. E. Aasmundtveit, "High Temperature Interconnect and Die Attach Technology: Au-Sn SLID Bonding", IEEE Trans. Compon. Packag. Manuf. Technol., 3(6), 904 (2013). https://doi.org/10.1109/TCPMT.2013.2253353
  20. L. Bernstein, "Semiconductor Joining by the Solid-Liquid- Interdiffusion (SLID) Process: I. The Systems Ag-In, Au-In, and Cu-In", J. Electrochem. Soc., 113(12), 1282 (1966). https://doi.org/10.1149/1.2423806
  21. N. P. Kim and R. F. Cooley, "Wafer back metallization for semiconductor packaging", Thin Solid Films, 153(1-3), 447 (1987). https://doi.org/10.1016/0040-6090(87)90204-5
  22. G. Ghosh, "Dissolution and interfacial reactions of thin-film Ti/Ni/Ag metallizations in solder joints", Acta Mater., 49(14), 2609 (2001). https://doi.org/10.1016/S1359-6454(01)00187-2
  23. N. Saunders and A. P. Miodownik, "The Cu-Sn (Copper-Tin) system", Bulletin of Alloy Phase Diagrams, 11, 278 (1990). https://doi.org/10.1007/BF03029299
  24. I. Karakaya and W. T. Thompson, "The Ag-Sn (Silver-Tin) system", Bulletin of Alloy Phase Diagrams, 8, 340 (1987). https://doi.org/10.1007/BF02869270
  25. A. Lis, M. S. Park, R. Arroyave, and C. Leinenbach, "Early stage growth characteristics of $Ag_3Sn$ intermetallic compounds during solid-solid and solid-liquid reactions in the Ag-Sn interlayer system: Experiments and simulations", J. Alloys Compd., 617, 763 (2014). https://doi.org/10.1016/j.jallcom.2014.08.082
  26. M. S. Park and R. Arroyave, "Concurrent nucleation, formation and growth of two intermetallic compounds ($Cu_6Sn_5$and $Cu_3Sn$) during the early stages of lead-free soldering", Acta Mater., 60(3), 923 (2012). https://doi.org/10.1016/j.actamat.2011.10.053
  27. J. Choi, G. S. Choi, and S. J. An, "Reliable low-temperature die attach process using Ag/Sn/Ag sandwich structure for high-temperature semiconductor devices", Sci. Rep., 9(1), 1 (2019). https://doi.org/10.1038/s41598-018-37186-2
  28. S. Annuar, R. Mahmoodian, M. Hamdi, and K. -N. Tu, "Intermetallic compounds in 3D integrated circuits technology: brief review", Sci. Technol. Adv. Mater., 18(1), 693 (2017). https://doi.org/10.1080/14686996.2017.1364975
  29. L. Yin and P. Borgesen, "On the root cause of Kirkendall voiding in $Cu_3Sn$", J. Mater. Res., 26(3), 455 (2011). https://doi.org/10.1557/jmr.2010.47
  30. J. Y. Kim and J. Yu, "Effects of residual impurities in electroplated Cu on the Kirkendall void formation during soldering", Appl. Phys. Lett., 92, 092109 (2008). https://doi.org/10.1063/1.2890072
  31. J. Yu and J. Y. Kim, "Effect of residual S on Kirkendall void formation at Cu/Sn-3.5Ag solder joints", Acta Materl., 56(19), 5514 (2008) https://doi.org/10.1016/j.actamat.2008.07.022
  32. S. W. Yoon, M. D. Glover, and K. Shiozaki, "Nickel-Tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles", IEEE Trans. Power Electron., 28(5), 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211