• Title/Summary/Keyword: logic gates

Search Result 256, Processing Time 0.021 seconds

Design and Implementation of a Low-Complexity and High-Throughput MIMO Symbol Detector Supporting up to 256 QAM (256 QAM까지 지원 가능한 저 복잡도 고 성능의 MIMO 심볼 검파기의 설계 및 구현)

  • Lee, Gwang-Ho;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This paper presents a low-complexity and high-throughput symbol detector for two-spatial-stream multiple-input multiple-output systems based on the modified maximum-likelihood symbol detection algorithm. In the proposed symbol detector, the cost function is calculated incrementally employing a multi-cycle architecture so as to eliminate the complex multiplications for each symbol, and the slicing operations are performed hierarchically according to the range of constellation points by a pipelined architecture. The proposed architecture exhibits low hardware complexity while supporting complicated modulations such as 256 QAM. In addition, various modulations and antenna configurations are supported flexibly by reconfiguring the pipeline for the slicing operation. The proposed symbol detector is implemented with 38.7K logic gates in a $0.11-{\mu}m$ CMOS process and its throughput is 166 Mbps for $2{\times}$3 16-QAM and 80Mbps for $2{\times}3$ 64-QAM where the operating frequency is 478 MHz.

Study on Chip Design & Implementation of 32 Bit Floating Point Compatible DSP (32비트 부동소수점 호환 DSP의 설계 및 칩 구현에 관한 연구)

  • Woo, Jong-Sik;Seo, Jin-Keun;Lim, Jae-Young;Park, Ju-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.74-84
    • /
    • 2000
  • This paper deals with procedures for design and implementation of a DSP, which is compatible with TMS320C30 DSP. CBS(Cycle Based Simulator) is developed to study the architecture of the target DSP. The simulator gives us detailed information such as function block operation, control signal values, register condition, bus and memory values when a instruction is being carried out. RTL design is carried out by VHDL. Logic simulation and hardware emulation are employed to verify proper operation of the design. The DSP is fabricated with 0.6${\mu}m$ CMOS technology. The Chip has 450,000 gates complexity, $9{\times}9mm^2$ area, 20 MIPS operation speed. It is confirmed by running 109 instructions out of 114 instructions and 13 kinds of algorithm that the developed DSP has compatibility with TMS320C30.

  • PDF

Design of a Fast Adder Using Robust QCA Design Guide (강건 QCA 설계 지침을 이용한 고속 가산기 설계)

  • Lee Eun-Choul;Kim Kyo-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.56-65
    • /
    • 2006
  • The Quantum-dot Cellular Automata (QCA) can be considered as a candidate for the next generation digital logic implementation technology due to their small feature sizes and ultra low power consumption. Up to now, several designs using Uh technology have been proposed. However, we found not all of the designs function properly. Furthermore, no general design guidelines have been proposed so far. A straightforward extension of a simple functional design pattern may fail. This makes designing a large scale circuits using QCA technology an extremely time-consuming process. In this paper, we show several critical vulnerabilities related to unbalanced input paths to QCA gates and sneak noise paths in QCA interconnect structures. In order to make up the vulnerabilities, a disciplinary guideline will be proposed. Also, we present a fast adder which has been designed by the discipline, and verified to be functional by the simulation.

A New Design of an ATF Block for DVCRs (DVCR용 ATF(Automatic Track Following) 블록의 새로운 설계)

  • Cho, Seong-Il;Kim, Sung-Wook;Ha, In-Joong;Kim, Jeong-Tae;Na, Il-Ju
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.106-112
    • /
    • 1998
  • Recently, the amount of image and audio data has been increasing dramatically for high performance. According to this trend, a high-density magnetic recording system is necessitated and the tracks of magnetic tapes are getting narrower. This, in turn, requires the capstan servo system of the magnetic recording system such as DVCR to control precisely the speed and position of the capstan motor. Especially, in case of play-back, the capstan servo system should be able to position and maintain the head on the desired place of the track. To meet this requirement, digital camcorders use ATF (Automatic Track Following). In this paper, a new ATF block using discrete Fourier transform is proposed. The proposed ATF block was designed and implemented in ALTERA FPGA chips and fully tested in a real DVCR system. It is shown through experiments that the new ATF block is more cost-effective than other existing ATF blocks using digital lowpass filters. In particular, the number of logic gates can be reduced by 20% in average, compared to the existing ATF's.

  • PDF

A VLSI Pulse-mode Digital Multilayer Neural Network for Pattern Classification : Architecture and Computational Behaviors (패턴인식용 VLSI 펄스형 디지탈 다계층 신경망의 구조및 동작 특성)

  • Kim, Young-Chul;Lee, Gyu-Sang
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.144-152
    • /
    • 1996
  • In this paper, a pulse-mode digital multilayer neural network with a massively parallel yet compact and flexible network architecture is presented. Algebraicneural operations are replaced by stochastic processes using pseudo-random pulse sequences and simple logic gates are used as basic computing elements. The distributions of the results from the stochastic processes are approximated using the hypergeometric distribution. A statistical model of the noise(error) is developed to estimate the relative accuracy associated with stochastic computing in terms of mean and variance. Numerical character recognition problems are applied to the network to evaluate the network performance and to justify the validity of analytic results based on the developed statistical model. The network architectures are modeled in VHDL using the mixed descriptions of gate-level and register transfer level (RTL). Experiments show that the statistical model successfully predicts the accuracy of the operations performed in the network and that the character classification rate of the network is competitive to that of ordinary Back-Propagation networks.

  • PDF

Design of Architecture of Programmable Stack-based Video Processor with VHDL (VHDL을 이용한 프로그램 가능한 스택 기반 영상 프로세서 구조 설계)

  • 박주현;김영민
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.31-43
    • /
    • 1999
  • The main goal of this paper is to design a high performance SVP(Stack based Video Processor) for network applications. The SVP is a comprehensive scheme; 'better' in the sense that it is an optimal selection of previously proposed enhancements of a stack machine and a video processor. This can process effectively object-based video data using a S-RISC(Stack-based Reduced Instruction Set Computer) with a semi -general-purpose architecture having a stack buffer for OOP(Object-Oriented Programming) with many small procedures at running programs. And it includes a vector processor that can improve the MPEG coding speed. The vector processor in the SVP can execute advanced mode motion compensation, motion prediction by half pixel and SA-DCT(Shape Adaptive-Discrete Cosine Transform) of MPEG-4. Absolutors and halfers in the vector processor make this architecture extensive to a encoder. We also designed a VLSI stack-oriented video processor using the proposed architecture of stack-oriented video decoding. It was designed with O.5$\mu\textrm{m}$ 3LM standard-cell technology, and has 110K logic gates and 12 Kbits SRAM internal buffer. The operating frequency is 50MHz. This executes algorithms of video decoding for QCIF 15fps(frame per second), maximum rate of VLBV(Very Low Bitrate Video) in MPEG-4.

  • PDF

A Low-Complexity Processor for Joint QR decomposition and Lattice Reduction for MIMO Systems (다중 입력 다중 출력 통신 시스템을 위한 저 복잡도의 Joint QR decomposition-Lattice Reduction 프로세서)

  • Park, Min-Woo;Lee, Sang-Woo;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.40-48
    • /
    • 2015
  • This paper presents a processor that performs QR decomposition (QRD) as well as Lattice Reduction (LR) for multiple-input multiple-output (MIMO) systems. By sharing the operations commonly required in QRD and LR, the hardware complexity of the proposed processor is reduced significantly. In addition, the proposed processor is designed based on a multi-cycle architecture so as to reduce the hardware complexity. The proposed processor is implemented with 139k logic gates in a $0.18-{\mu}m$ CMOS process, and its latency is $5{\mu}s$ for $8{\times}8$ MIMO preprocessing both QRD and LR where the operating frequency is 117MHz.

A Low-Complexity Processor for Joint Vignetting and Barrel distortion Correction for Wide-Angle Cameras (광각 카메라를 위한 저 복잡도 비네팅 및 배럴 왜곡 보정 프로세서)

  • Moon, Sun-A;Hong, Jin-U;Kim, Won-Tae;Kim, Tae-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.36-44
    • /
    • 2015
  • This paper proposes a low-complexity processor to correct vignetting and barrel distortion for wide-angle cameras. The proposed processor calculates the required correcting factors by employing the piecewise linear approximation so that the hardware complexity can be reduced significantly while maintaining correction quality. In addition, the processor is designed to correct the two distortions concurrently in a singular pipeline, which reduces the overall complexity. The proposed processor is implemented with 18.6K logic gates in a $0.11{\mu}m$ CMOS process and shows the maximum correction speed of 200Mpixels/s for correcting an image of which size is $2048{\times}2048$.

Design of Low Complexity and High Throughput Encoder for Structured LDPC Codes (구조적 LDPC 부호의 저복잡도 및 고속 부호화기 설계)

  • Jung, Yong-Min;Jung, Yun-Ho;Kim, Jae-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.61-69
    • /
    • 2009
  • This paper presents the design results of a low complexity and high throughput LDPC encoder structure. In order to solve the high complexity problem of the LDPC encoder, a simplified matrix-vector multiplier is proposed instead of the conventional complex matrix-vector multiplier. The proposed encoder also adopts a partially parallel structure and performs column-wise operations in matrix-vector multiplication to achieve high throughput. Implementation results show that the proposed architecture reduces the number of logic gates and memory elements by 37.4% and 56.7%, compared with existing five-stage pipelined architecture. The proposed encoder also supports 800Mbps throughput at 40MHz clock frequency which is improved about three times more than the existing architecture.

Low Power Symbol Detector for MIMO Communication Systems (MIMO 통신 시스템을 위한 저전력 심볼 검출기 설계 연구)

  • Hwang, You-Sun;Jang, Soo-Hyun;Jung, Yun-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.2
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, an low power symbol detector is proposed for MIMO communication system with two transmit and two receive antennas. The proposed symbol detector can support both the spatial multiplexing (SM) mode and spatial diversity (SD) mode for MIMO transmission technique, and shows the optimal maximum likelihood (ML) performance. Also, by sharing the hardware block and using the dedicated clock MIMO modes, the power of the proposed architecture is dramatically decreased. The proposed symbol detector was designed in hardware description language (HDL) and synthesized to logic gates using a $0.13-{\mu}m$ CMOS standard cell library. The power consumption was estimated by using Synopsys Power CompilerTM, which is reduced by maximum 85%, compared with the conventional architecture.