DOI QR코드

DOI QR Code

A Low-Complexity Processor for Joint Vignetting and Barrel distortion Correction for Wide-Angle Cameras

광각 카메라를 위한 저 복잡도 비네팅 및 배럴 왜곡 보정 프로세서

  • Moon, Sun-A (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Hong, Jin-U (School of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Won-Tae (Department of Electronics and Information Engineering, Korea Aerospace University) ;
  • Kim, Tae-Hwan (School of Electronics and Information Engineering, Korea Aerospace University)
  • 문선아 (한국항공대학교 항공전자정보공학부) ;
  • 홍진우 (한국항공대학교 항공전자정보공학부) ;
  • 김원태 (한국항공대학교 항공전자정보공학과) ;
  • 김태환 (한국항공대학교 항공전자정보공학부)
  • Received : 2015.05.19
  • Accepted : 2015.09.03
  • Published : 2015.09.25

Abstract

This paper proposes a low-complexity processor to correct vignetting and barrel distortion for wide-angle cameras. The proposed processor calculates the required correcting factors by employing the piecewise linear approximation so that the hardware complexity can be reduced significantly while maintaining correction quality. In addition, the processor is designed to correct the two distortions concurrently in a singular pipeline, which reduces the overall complexity. The proposed processor is implemented with 18.6K logic gates in a $0.11{\mu}m$ CMOS process and shows the maximum correction speed of 200Mpixels/s for correcting an image of which size is $2048{\times}2048$.

본 논문에서는 광각 카메라에서 발생하는 비네팅 왜곡과 배럴 왜곡을 효율적으로 보정하기 위한 낮은 복잡도의 프로세서를 제안하고, 이를 구현한 결과를 보인다. 제안하는 프로세서에서는 비네팅 왜곡과 배럴 왜곡 보정 시 복잡한 연산을 수반하는 고차 다항식과 같은 피팅 함수를 구간 선형 근사하여 보정 품질을 유지하면서도 연산 복잡도를 크게 낮추었다. 이를 기반으로, 배럴 왜곡과 비네팅 왜곡을 중첩적으로 보정하도록 설계하여 전체적인 하드웨어 복잡도를 낮추었다. 제안하는 프로세서는 $0.11{\mu}m$ CMOS 공정을 사용하여 18.6K의 논리 게이트로 구현되었으며, $2048{\times}2048$ 크기의 영상에 대하여 최대 200Mpixels/s의 속도로 보정이 가능하다.

Keywords

References

  1. I. Dinstein, F. Merkle, T. D. Lam and K. Y. Wong, "Imaging system response linearization and shading correction," IEEE Int'l. Conf. Robotics & Automation, vol. 1, pp. 204-209, Mar. 1984.
  2. S. J. Kim and M. Pollefeys, "Robust radiometric calibration and vignetting correction," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 562-576, Ari. 2008. https://doi.org/10.1109/TPAMI.2007.70732
  3. S. B. Kang and R. Weiss, "Can We Calibrate a Camera Using an Image of a Flat, Textureless Lambertian Surface?" in Proc. European Conf. Computer Vision, pp. 640-653, Jul. 2000.
  4. Y. Zheng, J. Yu, S. B. Kang, S. Lin and C. Kambhamettu, "Single-image vignetting correction using radial gradient symmetry," IEEE Conf. Computer Vision and Pattern Recognition, pp. 1-8, Jun. 2008.
  5. D. B. Goldman and J. H. Chen, "Vignette and exposure calibration and compensation," in Proc. IEEE Int'l Conf. on Computer Vision, vol. 1, no. 1, pp. 899-906, Oct. 2005.
  6. H. T. Ngo and V. K. Asari, "A pipelined architecture for real-time correction of barrel distortion in wide-angle camera images," IEEE Trans. Circuits and Sys. for Vid. Tech., vol. 15, no. 3, pp. 436-444, Mar. 2005. https://doi.org/10.1109/TCSVT.2004.842609
  7. P. Y. Chen, C. C. Huang, Y. H. Shiau and Y. T. Chen, "A VLSI implementation of barrel distortion correction for wide-angle camera images," IEEE Trans. Circuits and Sys. II: Express Briefs, vol. 56, no. 1, pp. 51-55, Jan. 2009. https://doi.org/10.1109/TCSII.2008.2010165
  8. S. L. Chen, H. Y. Huang and C. H. Luo, "Time multiplexed VLSI architecture for real-time barrel distortion correction in video-endoscopic images," IEEE Trans. Circuits and Sys. for Vid. Tech., vol. 21, no. 11, pp. 1612-1621, Nov. 2011. https://doi.org/10.1109/TCSVT.2011.2129850
  9. H. S. Jung, W. T. Kim, G. H. Lee and T. H. Kim, "Design and Implementation of a Low-Complexity Real-Time Barrel Distortion Corrector for Wide-Angle Camera," Journal of The Institute of Electronics Engineers of Korea, vol. 50, no. 6, pp. 131-137, Jun. 2013.
  10. H. S. Jung, Y. J. Park and T. H. Kim, "A Low-Complexity Real-Time Barrel Distortion Correction Processor Combined with Color Demosaicking," Journal of The Institute of Electronics Engineers of Korea, vol. 51, no. 9, pp. 57-66, Sep. 2014.
  11. P. Muralikrishna, S. Prakash and B. H. Subbaraya, "Digital processing of spacelab imagery," Advanced Space Research, vol. 2, no. 7, pp. 107-110, 1982.
  12. A. A. Sawchuk, "Real-time correction of intensity nonlinearities in imaging systems," IEEE Trans. Comuputer, vol. 26, no. 1, pp. 34-39. Jan. 1977.
  13. W. P. Yu, Y. K. Chung and J. Soh, "Vignetting distortion correction method for high quality digital imaging," in Proc. IEEE Int'l Conf. Pattern Recognition, vol. 3, no. 3, pp. 666-669, Aug. 2004.
  14. W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing(2nd ed.). Cambridge University Press, 1992.
  15. W. Li, S. Xu, G. Zhao and L. P. Goh, "Adaptive knot placement in B-spline curve approximation," Computer-Aided Design, vol. 37, no. 8, pp. 791-797, July, 2005. https://doi.org/10.1016/j.cad.2004.09.008
  16. J. G. Dunham, "Optimum uniform piecewise linear approximation of planar curves," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 1, pp. 67-75, Jan. 1986. https://doi.org/10.1109/TPAMI.1986.4767753