• Title/Summary/Keyword: locally integrable function

Search Result 5, Processing Time 0.018 seconds

WEAK BOUNDEDNESS FOR THE COMMUTATOR OF n-DIMENSIONAL ROUGH HARDY OPERATOR ON HOMOGENEOUS HERZ SPACES AND CENTRAL MORREY SPACES

  • Lei Ji;Mingquan Wei;Dunyan Yan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.1053-1066
    • /
    • 2024
  • In this paper, we study the boundedness of the commutator Hb formed by the rough Hardy operator H and a locally integrable function b from homogeneous Herz spaces to homogeneous weak Herz spaces. In addition, the weak boundedness of Hb on central Morrey spaces is also established.

Hypersurfaces with quasi-integrable ( f, g, u, ʋ, λ) -structure of an odd-dimensional sphere

  • Ki, U-Hang;Cho, Jong-Ki;Lee, Sung Baik
    • Honam Mathematical Journal
    • /
    • v.4 no.1
    • /
    • pp.75-84
    • /
    • 1982
  • Let M be a complete and orientable hypersurface of an odd-dimensional sphere $S^{2n+1}$ with quasi-integrable $(f,\;g,\;u,\;{\nu},\;{\lambda})$ -structure. The purpose of the present paper is to prove the following two theorems. (I) If the scalar curvature of M is constant and the function $\lambda$ is not locally constant, then M is a great sphere $S^{2n}$(1) or a product of two spheres with the same dimension $S^{n}(1/\sqrt{2}){\times}S^{n}(1/\sqrt{2})$. (II) Suppose that the sectional curvature of the section $\gamma(u,\;{\nu})$ spanned by u and $\nu$ is constant on M and M is compact. If the second fundamental tensor H of M is positive semi-definite and satisfies trace $$^{t}HH{\leq_-}{2n}$$, then M is a great sphere $S^{2n}$ (1) or a product of two spheres $S^{n}{\times}S^{n}$ or $S^{p}{\times}S^{2n-p}$, p being odd.

  • PDF

DISTRIBUTIONAL SOLUTIONS OF WILSON'S FUNCTIONAL EQUATIONS WITH INVOLUTION AND THEIR ERDÖS' PROBLEM

  • Chung, Jaeyoung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1157-1169
    • /
    • 2016
  • We find the distributional solutions of the Wilson's functional equations $$u{\circ}T+u{\circ}T^{\sigma}-2u{\otimes}v=0,\\u{\circ}T+u{\circ}T^{\sigma}-2v{\otimes}u=0,$$ where $u,v{\in}{\mathcal{D}}^{\prime}({\mathbb{R}}^n)$, the space of Schwartz distributions, T(x, y) = x + y, $T^{\sigma}(x,y)=x+{\sigma}y$, $x,y{\in}{\mathbb{R}}^n$, ${\sigma}$ an involution, and ${\circ}$, ${\otimes}$ are pullback and tensor product of distributions, respectively. As a consequence, we solve the $Erd{\ddot{o}}s$' problem for the Wilson's functional equations in the class of locally integrable functions. We also consider the Ulam-Hyers stability of the classical Wilson's functional equations $$f(x+y)+f(x+{\sigma}y)=2f(x)g(y),\\f(x+y)+f(x+{\sigma}y)=2g(x)f(y)$$ in the class of Lebesgue measurable functions.

Lebesgue-Stieltjes Measures and Differentiation of Measures

  • Jeon, Won-Kee
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.51-74
    • /
    • 1986
  • The thery of measure is significant in that we extend from it to the theory of integration. AS specific metric outer measures we can take Hausdorff outer measure and Lebesgue-Stieltjes outer measure connecting measure with monotone functions.([12]) The purpose of this paper is to find some properties of Lebesgue-Stieltjes measure by extending it from $R^1$ to $R^n(n{\geq}1)$ $({\S}3)$ and differentiation of the integral defined by Borel measure $({\S}4)$. If in detail, as follows. We proved that if $_n{\lambda}_{f}^{\ast}$ is Lebesgue-Stieltjes outer measure defined on a finite monotone increasing function $f:R{\rightarrow}R$ with the right continuity, then $$_n{\lambda}_{f}^{\ast}(I)=\prod_{j=1}^{n}(f(b_j)-f(a_j))$$, where $I={(x_1,...,x_n){\mid}a_j$<$x_j{\leq}b_j,\;j=1,...,n}$. (Theorem 3.6). We've reached the conclusion of an extension of Lebesgue Differentiation Theorem in the course of proving that the class of continuous function on $R^n$ with compact support is dense in $L^p(d{\mu})$ ($1{\leq$}p<$\infty$) (Proposition 2.4). That is, if f is locally $\mu$-integrable on $R^n$, then $\lim_{h\to\0}\left(\frac{1}{{\mu}(Q_x(h))}\right)\int_{Qx(h)}f\;d{\mu}=f(x)\;a.e.(\mu)$.

  • PDF