DOI QR코드

DOI QR Code

WEAK BOUNDEDNESS FOR THE COMMUTATOR OF n-DIMENSIONAL ROUGH HARDY OPERATOR ON HOMOGENEOUS HERZ SPACES AND CENTRAL MORREY SPACES

  • Lei Ji (School of Mathematical Sciences University of Chinese Academy of Sciences) ;
  • Mingquan Wei (School of Mathematics and Statistics Xinyang Normal University) ;
  • Dunyan Yan (School of Mathematical Sciences University of Chinese Academy of Sciences)
  • Received : 2023.10.16
  • Accepted : 2024.02.06
  • Published : 2024.07.31

Abstract

In this paper, we study the boundedness of the commutator Hb formed by the rough Hardy operator H and a locally integrable function b from homogeneous Herz spaces to homogeneous weak Herz spaces. In addition, the weak boundedness of Hb on central Morrey spaces is also established.

Keywords

Acknowledgement

This work is supported by the Natural Science Foundation of China (Nos. 12271501, 12301123 and 12071052) and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University.

References

  1. J. Alvarez, J. D. Lakey, and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math. 51 (2000), no. 1, 1-47. 
  2. K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9-26. https://doi.org/10.4064/sm-72-1-9-26 
  3. V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I, Eurasian Math. J. 3 (2012), no. 3, 11-32. 
  4. V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II, Eurasian Math. J. 4 (2013), no. 1, 21-45. 
  5. M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1687-1693. https://doi.org/10.2307/2160978 
  6. W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J. 43 (1976), no. 2, 365-373. http://projecteuclid.org/euclid.dmj/1077311646  1077311646
  7. C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588. https://doi.org/10.1090/S0002-9904-1971-12763-5 
  8. Z. Fu, S. L. Gong, S. Lu, and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math. 27 (2015), no. 5, 2825-2851. https://doi.org/10.1515/forum-2013-0064 
  9. Z. Fu, R. Gong, E. Pozzi, and Q. Wu, Cauchy-Szego commutators on weighted Morrey spaces, Math. Nachr. 296 (2023), no. 5, 1859-1885. https://doi.org/10.1002/mana.202000139 
  10. Z. Fu, Z. Liu, and S. Lu, Boundedness for commutators of fractional Hardy operators in Herz spaces, Progr. Natur. Sci. (English Ed.) 17 (2007), no. 1, 20-25.  https://doi.org/10.1080/10020070612331343219
  11. Z. Fu, Z. Liu, S. Lu, and H. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A 50 (2007), no. 10, 1418-1426. https://doi.org/10.1007/s11425-007-0094-4 
  12. Z. Fu, S. Lu, and S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math. 33 (2021), no. 2, 505-529. https://doi.org/10.1515/forum-2020-0243 
  13. Z. Fu, S. Lu, and F. Zhao, Commutators of n-dimensional rough Hardy operators, Sci. China Math. 54 (2011), no. 1, 95-104. https://doi.org/10.1007/s11425-010-4110-8 
  14. G. Gao, Boundedness for commutators of n-dimensional rough Hardy operators on Morrey-Herz spaces, Comput. Math. Appl. 64 (2012), no. 4, 544-549. https://doi.org/10.1016/j.camwa.2011.12.045 
  15. G. Gao, X. Hu, and C. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal. 7 (2016), no. 3, 421-433. https://doi.org/10.1215/20088752-3605447 
  16. B. I. Golubov, On the boundedness of the Hardy and the Hardy-Littlewood operators in the spaces Re H1 and BMO, Sb. Math. 188 (1997), no. 7, 1041-1054; translated from Mat. Sb. 188 (1997), no. 7, 93-106. https://doi.org/10.1070/SM1997v188n07ABEH000246 
  17. R. Gong, M. N. Vempati, Q. Wu, and P. Xie, Boundedness and compactness of Cauchytype integral commutator on weighted Morrey spaces, J. Aust. Math. Soc. 113 (2022), no. 1, 36-56. https://doi.org/10.1017/S1446788722000015 
  18. W. Guo, J. Lian, and H. Wu, The unified theory for the necessity of bounded commutators and applications, J. Geom. Anal. 30 (2020), no. 4, 3995-4035. https://doi.org/10.1007/s12220-019-00226-y 
  19. G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314-317. https://doi.org/10.1007/BF01199965 
  20. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1988. 
  21. Q. He, M. Wei, and D. Yan, Characterizations of p-adic central Campanato spaces via commutator of p-adic Hardy type operators, J. Korean Math. Soc. 56 (2019), no. 3, 767-787. https://doi.org/10.4134/JKMS.j180390 
  22. G. Hu, S. Lu, and D. Yang, The applications of weak Herz spaces, Adv. in Math. (China) 26 (1997), no. 5, 417-428. 
  23. L. Ji, M. Q. Wei, and D. Y. Yan, A characterization of the weak boundedness for commutators of Hardy-type operators on central Morrey spaces, Submitted. 
  24. Y. Komori-Furuya, Notes on commutators of Hardy operators, Int. J. Pure Appl. Math. 7 (2003), no. 3, 329-334. 
  25. S. Long and J. Wang, Commutators of Hardy operators, J. Math. Anal. Appl. 274 (2002), no. 2, 626-644. https://doi.org/10.1016/S0022-247X(02)00321-9 
  26. S. Lu and D. Yang, The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. (N.S.) 11 (1995), no. 3, 72-94. https://doi.org/10.1007/BF02836580 
  27. S. Lu and D. Yang, The weighted Herz-type Hardy space and its applications, Sci. China Ser. A 38 (1995), no. 6, 662-673. 
  28. C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126-166. https://doi.org/10.2307/1989904 
  29. X. Nie and D. Yan, Sharp constant of Hardy operators corresponding to general positive measures, J. Inequal. Appl. 2018 (2018), Paper No. 78, 18 pp. https://doi.org/10.1186/s13660-018-1660-8 
  30. J. Ruan, D. Fan, and Q. Y. Wu, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl. 22 (2019), no. 1, 307-329. https://doi.org/10.7153/mia-2019-22-24 
  31. E. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), no. 1, 329-337. https://doi.org/10.2307/1999537 
  32. S. Shi and S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl. 429 (2015), no. 2, 713-732. https://doi.org/10.1016/j.jmaa.2015.03.083 
  33. E. M. Stein and G. L. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, NJ, 1971. 
  34. D. H. Wang and J. Zhou, Some new classes of BMO spaces, Acta Math. Sinica (Chinese Ser.) 60 (2017), no. 5, 833-846. 
  35. D. H. Wang and J. Zhou, Characterizations of the BMO and Lipschitz spaces via commutators on weak Lebesgue and Morrey spaces, Acta Math. Appl. Sin. Engl. Ser. 39 (2023), no. 3, 583-590. https://doi.org/10.1007/s10255-023-1077-0 
  36. M. Wei, A characterization of $CMO^{{\vec{q}}}$ via the commutator of Hardy-type operators on mixed Herz spaces, Appl. Anal. 101 (2022), no. 16, 5727-5742. https://doi.org/10.1080/00036811.2021.1903446 
  37. M. Wei and D. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces, J. Inequal. Appl. 2023 (2023), Paper No. 31, 13 pp. https://doi.org/10.1186/s13660-023-02936-y 
  38. Q. Y. Wu and Z. W. Fu, Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 2, 635-654. https://doi.org/10.1007/s40840-017-0444-5 
  39. F. Zhao and S. Lu, A characterization of λ-central BMO space, Front. Math. China 8 (2013), no. 1, 229-238. https://doi.org/10.1007/s11464-012-0251-0