Acknowledgement
This work is supported by the Natural Science Foundation of China (Nos. 12271501, 12301123 and 12071052) and the Nanhu Scholar Program for Young Scholars of Xinyang Normal University.
References
- J. Alvarez, J. D. Lakey, and M. Guzman-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math. 51 (2000), no. 1, 1-47.
- K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9-26. https://doi.org/10.4064/sm-72-1-9-26
- V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I, Eurasian Math. J. 3 (2012), no. 3, 11-32.
- V. I. Burenkov, Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II, Eurasian Math. J. 4 (2013), no. 1, 21-45.
- M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1687-1693. https://doi.org/10.2307/2160978
- W. G. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J. 43 (1976), no. 2, 365-373. http://projecteuclid.org/euclid.dmj/1077311646 1077311646
- C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587-588. https://doi.org/10.1090/S0002-9904-1971-12763-5
- Z. Fu, S. L. Gong, S. Lu, and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math. 27 (2015), no. 5, 2825-2851. https://doi.org/10.1515/forum-2013-0064
- Z. Fu, R. Gong, E. Pozzi, and Q. Wu, Cauchy-Szego commutators on weighted Morrey spaces, Math. Nachr. 296 (2023), no. 5, 1859-1885. https://doi.org/10.1002/mana.202000139
- Z. Fu, Z. Liu, and S. Lu, Boundedness for commutators of fractional Hardy operators in Herz spaces, Progr. Natur. Sci. (English Ed.) 17 (2007), no. 1, 20-25. https://doi.org/10.1080/10020070612331343219
- Z. Fu, Z. Liu, S. Lu, and H. Wang, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A 50 (2007), no. 10, 1418-1426. https://doi.org/10.1007/s11425-007-0094-4
- Z. Fu, S. Lu, and S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math. 33 (2021), no. 2, 505-529. https://doi.org/10.1515/forum-2020-0243
- Z. Fu, S. Lu, and F. Zhao, Commutators of n-dimensional rough Hardy operators, Sci. China Math. 54 (2011), no. 1, 95-104. https://doi.org/10.1007/s11425-010-4110-8
- G. Gao, Boundedness for commutators of n-dimensional rough Hardy operators on Morrey-Herz spaces, Comput. Math. Appl. 64 (2012), no. 4, 544-549. https://doi.org/10.1016/j.camwa.2011.12.045
- G. Gao, X. Hu, and C. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal. 7 (2016), no. 3, 421-433. https://doi.org/10.1215/20088752-3605447
- B. I. Golubov, On the boundedness of the Hardy and the Hardy-Littlewood operators in the spaces Re H1 and BMO, Sb. Math. 188 (1997), no. 7, 1041-1054; translated from Mat. Sb. 188 (1997), no. 7, 93-106. https://doi.org/10.1070/SM1997v188n07ABEH000246
- R. Gong, M. N. Vempati, Q. Wu, and P. Xie, Boundedness and compactness of Cauchytype integral commutator on weighted Morrey spaces, J. Aust. Math. Soc. 113 (2022), no. 1, 36-56. https://doi.org/10.1017/S1446788722000015
- W. Guo, J. Lian, and H. Wu, The unified theory for the necessity of bounded commutators and applications, J. Geom. Anal. 30 (2020), no. 4, 3995-4035. https://doi.org/10.1007/s12220-019-00226-y
- G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314-317. https://doi.org/10.1007/BF01199965
- G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, reprint of the 1952 edition, Cambridge Mathematical Library, Cambridge Univ. Press, Cambridge, 1988.
- Q. He, M. Wei, and D. Yan, Characterizations of p-adic central Campanato spaces via commutator of p-adic Hardy type operators, J. Korean Math. Soc. 56 (2019), no. 3, 767-787. https://doi.org/10.4134/JKMS.j180390
- G. Hu, S. Lu, and D. Yang, The applications of weak Herz spaces, Adv. in Math. (China) 26 (1997), no. 5, 417-428.
- L. Ji, M. Q. Wei, and D. Y. Yan, A characterization of the weak boundedness for commutators of Hardy-type operators on central Morrey spaces, Submitted.
- Y. Komori-Furuya, Notes on commutators of Hardy operators, Int. J. Pure Appl. Math. 7 (2003), no. 3, 329-334.
- S. Long and J. Wang, Commutators of Hardy operators, J. Math. Anal. Appl. 274 (2002), no. 2, 626-644. https://doi.org/10.1016/S0022-247X(02)00321-9
- S. Lu and D. Yang, The central BMO spaces and Littlewood-Paley operators, Approx. Theory Appl. (N.S.) 11 (1995), no. 3, 72-94. https://doi.org/10.1007/BF02836580
- S. Lu and D. Yang, The weighted Herz-type Hardy space and its applications, Sci. China Ser. A 38 (1995), no. 6, 662-673.
- C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), no. 1, 126-166. https://doi.org/10.2307/1989904
- X. Nie and D. Yan, Sharp constant of Hardy operators corresponding to general positive measures, J. Inequal. Appl. 2018 (2018), Paper No. 78, 18 pp. https://doi.org/10.1186/s13660-018-1660-8
- J. Ruan, D. Fan, and Q. Y. Wu, Weighted Morrey estimates for Hausdorff operator and its commutator on the Heisenberg group, Math. Inequal. Appl. 22 (2019), no. 1, 307-329. https://doi.org/10.7153/mia-2019-22-24
- E. Sawyer, Weighted Lebesgue and Lorentz norm inequalities for the Hardy operator, Trans. Amer. Math. Soc. 281 (1984), no. 1, 329-337. https://doi.org/10.2307/1999537
- S. Shi and S. Lu, Characterization of the central Campanato space via the commutator operator of Hardy type, J. Math. Anal. Appl. 429 (2015), no. 2, 713-732. https://doi.org/10.1016/j.jmaa.2015.03.083
- E. M. Stein and G. L. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton Univ. Press, Princeton, NJ, 1971.
- D. H. Wang and J. Zhou, Some new classes of BMO spaces, Acta Math. Sinica (Chinese Ser.) 60 (2017), no. 5, 833-846.
- D. H. Wang and J. Zhou, Characterizations of the BMO and Lipschitz spaces via commutators on weak Lebesgue and Morrey spaces, Acta Math. Appl. Sin. Engl. Ser. 39 (2023), no. 3, 583-590. https://doi.org/10.1007/s10255-023-1077-0
-
M. Wei, A characterization of
$CMO^{{\vec{q}}}$ via the commutator of Hardy-type operators on mixed Herz spaces, Appl. Anal. 101 (2022), no. 16, 5727-5742. https://doi.org/10.1080/00036811.2021.1903446 - M. Wei and D. Yan, Sharp bounds for Hardy-type operators on mixed radial-angular central Morrey spaces, J. Inequal. Appl. 2023 (2023), Paper No. 31, 13 pp. https://doi.org/10.1186/s13660-023-02936-y
- Q. Y. Wu and Z. W. Fu, Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 2, 635-654. https://doi.org/10.1007/s40840-017-0444-5
- F. Zhao and S. Lu, A characterization of λ-central BMO space, Front. Math. China 8 (2013), no. 1, 229-238. https://doi.org/10.1007/s11464-012-0251-0