• Title/Summary/Keyword: load-displacement curve

Search Result 307, Processing Time 0.03 seconds

Elliptic Integral Solutions of Large Deflection of Reinforcing Fiber Elastica with Circular Wavy Pattern

  • Jung, Jae-Ho;Lee, Kyung-Woo;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.163-169
    • /
    • 2001
  • The solution of two-dimensional deflection of circular wavy reinforcing fiber elastics was obtained for one end clamped boundary under concentrated load condition. The fiber was regarded as a linear elastic material. Wavy shape was described as a combination of half-circular arc smoothly connected each other with constant curvature of all the same magnitude and alternative sign. Also load direction was taken into account. As a result, the solution was expressed in terms of a series of elliptic integrals. These elliptic integrals had two different transformed parameters involved with load value and initial radius of curvature. While we found the exact solutions and expressed them in terms of elliptic integrals, the recursive ignition formulae about the displacement and arc length at each segment of circular section were obtained. Algorithm of determining unknown parameters was established and the profile curve of deflected beam was shown in comparison with initial shape.

  • PDF

Development of Fragility Curves for Seismic Stability Evaluation of Cut-slopes (지진에 대한 안전성 평가를 위한 깎기비탈면의 취약도 곡선 작성)

  • Park, Noh-Seok;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.29-41
    • /
    • 2017
  • There are uncertainties about the seismic load caused by seismic waves, which cannot be predicted due to the characteristics of the earthquake occurrence. Therefore, it is necessary to consider these uncertainties by probabilistic analysis. In this paper, procedures to develop a fragility curve that is a representative method to evaluate the safety of a structure by stochastic analysis were proposed for cut slopes. Fragility curve that considers uncertainties of soil shear strength parameters was prepared by Monte Carlo Simulation using pseudo static analysis. The fragility curve considering the uncertainty of the input ground motion was developed by performing time-history seismic analysis using selected 30 real ground input motions and the Newmark type displacement evaluation analysis. Fragility curves are represented as the cumulative probability distribution function with lognormal distribution by using the maximum likelihood estimation method.

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Analysis of Behavior of Metal Plate Connection by Nonlinear Finite Element Method (비선형 유한요소법을 이용한 메탈 플레이트 접합부의 거동해석)

  • Hyun, Jae-Hyuk;Kun, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.23-30
    • /
    • 1999
  • have been many studies to analyze the behavior of metal plate connector that most widely used to connect light frame wood trusses. Finite element method{FEM) was one of the methods for those studies. FEM using linear model may well be applicable to predict the initial slope of load-displacement curve for metal plate connection. However, displacement may be overestimated above experimental results with the increase of load. Therefore, linear model cannot be used for the nonlinear behavior part. To predict real behavior more exactly, nonlinear term was included to FEM model in this study. It was found out that EA and AA mode showed the high agreement between predicted results and experimental ones. However, EE and AE mode showed a little difference between predicted results and experimental ones in nonlinear part. This results might be caused by insufficient reflection of the slip effect. Consequently, the effect of slip shall be considered to approve the accuracy of nonlinear analysis for the behavior of metal plate connection.

  • PDF

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements (응집영역요소를 이용한 균열진전 모사)

  • Ha, Sang-Yul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.519-525
    • /
    • 2009
  • In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.

Physical Properties of Organic- and Inorganic-Fiber Reinforced Portlandcement (유기 및 무기 섬유로 보강한 포트랜드 시멘트의 물성 연구)

  • Chang Pok-Kie;Kim Yun Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.690-695
    • /
    • 2004
  • In this study, inorganic (steel, asbestos and carbon) and organic (polyacryl and polyamide) fibers were used to investigate their reinforcing effects of the physical properties of Portland cement. From the load-displacement curve of each reinforced specimen, fracture strength, Young's module, fracture energy and fracture toughness were computed and compared with each other. In addition, the experiment of their impact toughness was carried out and compared with the fracture energy. For the improvement of fracture strength the inorganic (asbestos) fiber reinforcement was most effective, while the best reinforcing effect of impact toughness was achieved by organic (polyacryl) fiber. And steel fiber proved to be most adequate for improvement of both fracture strength and impact toughness. Steel fiber also showed the highest fracture energy and fracture toughness among all of the fibers.

Investigation into Characteristics of Bending Stiffness and Failure for ISB Panel (ISB 판넬의 굽힘강성 및 파손특성에 관한 연구)

  • Ahn Dong-Gyu;Lee Sang-Hoon;Kim Min-Su;Han Gil-Young;Jung Chang-Gyun;Yang Bong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.162-172
    • /
    • 2005
  • The objective of this research works is to investigate into characteristics of bending stiffness and failure for the ISB ultra-lightweight panel with internally structured material. The expanded metal with a crimped pyramid shape and woven metal are employed as an internally structured material. Through three-points bending test, the force-displacement curve and failure shape are obtained to examine the deformation pattern, characteristic data, such as maximum load, displacement at maximum load, etc, and failure pattern of the ISB panel. In addition, the influence of design parameters fur ISB panel on the specific stiffness, the specific stiffness per unit width, failure mode and failure map has been found. Finally, it has been shown that ISB containing expand metal with the crimped pyramidal shape is prefer to that containing woven metal from the view point of optimal design for ISB panel.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Numerical simulation of fracture and damage behaviour of concrete at different ages

  • Jin, Nanguo;Tian, Ye;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.221-241
    • /
    • 2007
  • Based on the experiment results, the damage and fracture behavior of concrete at the ages of 1d, 2d, 7d and 28d, in three-point bending and uniaxial tensile tests, were simulated with a finite element program, ABAQUS. The critical stress intensity factor $K_{IC}^s$ and the critical crack tip opening displacement ($CTOD_C$) of concrete were calculated with effective-elastic crack approach for the three-point bending test of grade C30 concrete. Based on the crack band model, a bilinear strain-softening curve was derived to simulate the LOAD-CMOD curves and LOAD-Displacement curves. In numerical analysis of the uniaxial tension test of concrete of grade C40, the damage and fracture mechanics were combined. The smeared cracking model coupling with damaged variable was adopted to evaluate the onset and development of microcracking of uniaxial tensile specimen. The uniaxial tension test was simulated by invoking the damage plastic model which took both damage and plasticity as inner variables with user subroutines. All the numerical simulated results show good agreement with the experimental results.