Browse > Article

Numerical Simulations of Crack Initiation and Propagation Using Cohesive Zone Elements  

Ha, Sang-Yul (포항공과대학교 기계공학과)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.22, no.6, 2009 , pp. 519-525 More about this Journal
Abstract
In this study a cohesive zone model was used to simulate the delamination phenomena which occurs by a successive crack initiation and propagation in composite laminates. The cohesive zone model was incorporated to the classical finite element method via cohesive element formulation and then implemented into the user-subroutine UEL of a commercial finite element program Abaqus. To validate the formulation and implementation of the cohesive element the finite element results were compared with the experimental data of double cantilever beam and end notched flexure tests. The numerical results well agree with the experimental load-displacement curves. Also the effect of the elastic stiffness and the size of the cohesive element on the global load-displacement curves were studied numerically. To minimize the mesh-dependency of the crack propagation path and eliminate the zig-zag patterns in the load-displacement curve, cohesive elements should be refined at the crack-tip.
Keywords
cohesive zone element; crack initiation and propagation; delamination; composite laminates;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cox, B., Yang, Q. (2005) Cohesive Models for Damage Evolution in Laminated Composites, International Journal Fracture, 133, pp.107-137   DOI
2 Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, Journal Mech. Phys. Solids, 8, pp.100-108   DOI   ScienceOn
3 Freund, L.B., Suresh, S. (2003) Thin Film Materials: Stress, Defect Formation, and Surface Evolution, Cambridge University Press
4 Hibbitt, Karlsson, Sorensen. (2004) ABAQUS 6.5 User's Manuals. Pawtucket, USA.
5 Li, H., Chandra, N. (2003) Analysis of Crack Growth and Crack-tip Plasticity in Ductile Materials Using Cohesive Zone Models, International Journal Plasticity, 19, pp.849-882   DOI   ScienceOn
6 Tvergaard, V., Hutchinson, J.W. (1992) The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids, Journal Mech. Phys. Solids, 40, pp. 1377-1397   DOI   ScienceOn
7 Yang, Q., Shim, D., Spearing, S. (2004) A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints, Microel. Eng., 75, pp.85-95   DOI   ScienceOn
8 Simo, J., Ju, J.W. (1987a) Strain- and Stress-Based Continuum Damage Model-I. Formulation, International Journal Solids Struct., 23, pp. 821-840   DOI   ScienceOn
9 Benzeggagh, M.L., Kenane, M. (1996) Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus, Compos. Sci. Technol., 49, pp.439-449   DOI   ScienceOn
10 Barenblatt, G.I. (1962) Mathematical Theory of Equilibrium Crack in Brittle Fracture, Advance in Applied Mechanics, 7, pp.55-129   DOI
11 Nittur, P.G., Maiti, S. Geubelle, P.H. (2008) Grain-Level Analysis of Dynamic Fragmentation of Ceramics under Multi-Axial Compression, Journal Mech. Phys. Solids, 56, pp. 993-1017   DOI   ScienceOn
12 Camacho, G.T., Ortiz, M. (1996) Computational Modelling of Impact Damage in Brittle Materials, International Journal Solids Struc., 33, pp.2899-2938   DOI   ScienceOn
13 Goyal, S.V., Johnson, E.R., Davila, C.G. (2004) Irreversible Constitutive Law for Modeling the Delamination Process Using Interfacial Surface Discontinuities, Compos. Struct., 64, pp.91-105   DOI   ScienceOn
14 Ortiz, M., Pandolfi, A. (1999) Finite Deformation Irreversible Cohesive Elements for Three Dimensional Crack-Propagation Analysis, International Journal Num. Meth. Eng., 44, pp.1267-1282   DOI   ScienceOn
15 Turon, A., Camanho, P.P., Costa, J., Davila, C.G. (2006) A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading, Mech. Mater., 38, pp.1072-1089   DOI   ScienceOn
16 Ruiz, G., Pandolfi, A., Ortiz, M. (2001) Three-Dimensional Cohesive Modeling of Dynamic Mixed-Mode Fracture, International Journal Numer. Methods Eng., 52, pp.97-120   DOI   ScienceOn
17 Xu, X.P., Needleman, A. (1994) Numerical Simulations of Fast Crack Growth in Brittle solids, Journal Mech. Phys. Solids, 42, pp. 1397-1434   DOI   ScienceOn
18 Geubelle, P.H. (1995) Finite Deformation Effects in Homogeneous and Interfacial Fracture, International Journal Solids Struc., 36, pp.1003-1016   DOI   ScienceOn
19 Lin, G., Geubelle, P.H., Sottos, N.R. (2001) Simulation of Fiber Debonding with Friction in a Model Composite Pushout Test, International Journal Solids Struct., 38, pp. 8547-8562   DOI   ScienceOn