• Title/Summary/Keyword: liquid crystal devices

Search Result 205, Processing Time 0.027 seconds

Electro-optic Properties of Polymer Dispersed Liquid Crystal Displays: Effect of BDVE(Butanediol Vinyl Ether) & Temprature Stability (고분자 분산형 액정 표시 소자(PDLC)의 제작 및 측정: BDVE(Butanediol Vinyl Ether) 첨가에 따른 효과와 온도의존성 평가)

  • No, Young-Seok;Jeon, Chan-Wook
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.938-944
    • /
    • 2008
  • The electro-optic properties of polymer-dispersed liquid crystal cells containing BDVE(Butanediol vinyl ether) in PN393 base pre-polymer were examined. The higher the contents of BDVE, the smaller becomes the droplet size. However, the droplet size was saturated around $3{\mu}m$ even at 40 wt% of BDVE. Both of contrast ratio and response time of PDLC cell fabricated with a new formula were found to be superior to the reference cell with PN393 by the factor of 4.9 and 0.15, respectively. However, the new formula made the operating voltage go higher compared to the reference cell of PN393 formula. Except for contrast ratio, response time as well as operating voltage were found to be highly stabilized by adding BDVE in PN393 base pre-polymer over the temperature range of $0{\sim}60^{\circ}C$ studied.

Optimal Design of Underwater SAW Devices (수중 SAW Device의 최적 설계법)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.18-32
    • /
    • 1990
  • Deeping on purpose, SAW device may have to function while immersed in a liquid. Those who are familiar with SAW devices would anticipate difficulty since the propagating surface waves will tend to radiate energy into the liquid and hence suffer attenuation. Thus, to design an immerable SAW device, more attention and full information about the wave properites is required to overcome the attenuation and get the highest SAW generation eficiency. Though numerical simulation, the optimal geometry of underwater SAW devices, such as optimal piezoelectric crystal cut, SAW propagation direction and nondimensional wave number(ka) is determined to get the maximum SAW excitation efficiency, the minimum attenuation in propagation and pure mode propagation for all the modes of surface wave propagation. The design technique can be appliedto an arbitrary combination of a piezoelectric layer, a substrate and a liquid medium. In this paper, PZT and PVDF layers and a steel substrate are use for the solid medium. The technique can be easily employed for the design of underwater sensors and actuators for the applications, such as sonar marine antifouling, industrial and medical uses.

  • PDF

Frost Prevention of Fin-Tube Heat Exchanger by Spreading Antifreezing Solution (부동액 도포에 의한 핀-튜브 열교환기 착상방지)

  • Oh, Sang-Youp;Chang, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.477-485
    • /
    • 2006
  • A study on frost prevention of fin-tube heat exchanger is experimently performed by spreading antifreezing solution on heat exchanger surface. It is desirable that the antifreezing solution spreads completely on the surface forming thin liquid film to prevent frost nucleation and crystal growth and to reduce the thermal resistance across the liquid film. A small amount of antifreezing solution falls in drops on heat exchanger surface using two types of supplying devices, and a porous layer coating technique is adopted to enhance the wettedness of antifreezing solution on the surface. It is observed that the antifreezing solution liquid film prevents fin-tube heat exchanger from frosting, and heat transfer performance does not degrade through the frosting tests. The concentration of supplied antifreezing solution can be determined by heat transfer analysis of the first row of heat exchanger to avoid antifreezing solution freezing due to dilution by moisture absorption.

White Light-Emitting Diodes Using Conjugated Polymer Blends

  • Hwang, Do-Hoon;Park, Moo-Jin;Kim, Suk-Kyung;Lee, Chang-Hee;Kim, Yong-Bae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.585-587
    • /
    • 2004
  • We report the characterization of white light emitting devices fabricated using conjugated polymer blends. Blue emissive poly[9,9-bis(4'-n-octyloxyphenyl) fluorene-2,7-diyl-co-10-(2'-ethylhexyl)phenothiazine-3,7-diyl] [poly(BOPF-co-PTZ)] and red emissive poly(2-(2'-ethylhexyloxy)-5-methoxy-1,4-phenylenevinylene) (MEH-PPV) were employed in the blends. The inefficient energy transfer between these blue and red light emitting polymers (previously deduced from the PL spectra of the blend films) enables the production of white light emission through control of the blend ratio. The PL and EL emission spectra of the blend systems were found to vary with the blend ratio. The EL devices were fabricated in the ITO/PEDOT/blend/LiF/Al configuration and white light emission was obtained for one of the tested blend ratios.

  • PDF

The Study of Photosensitive Polyimide for Organic Electroluminescence (광반응성 폴리이미드를 이용한 유기전기발광소자에 관한 연구)

  • Rho, Sok-Won;Shin, Dong-Myung;Shon, Byoung-Choung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.21-25
    • /
    • 1998
  • Organic-based electroluminescent devices have attracted lots of interests because of their possible application as a large-area flat panel display. Polyimides have been used for photo-alignment in LCD(Liquid Crystal Display). However, the devices used in this study were fabricated with polyimide doped with N,N'-Diphenyl-N,N'-di(m-tolyl)-benzidine(TPD) (3, 10, 30wt%) for electroluminescent hole tranforting layer(EHTL). The photochemical and physical properties of EHTL was studied. The film thicknesses were reduced under illumination with UV light. Polyimide films doped with TPD(3wt%) was irradiated and the electrical properties of the films were studied.

Technical Obstacles to Suftla Flexible Microelectronics

  • Miyasaka, Mitsutoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1763-1766
    • /
    • 2007
  • Three technical obstacles must be overcome to build a fruitful business in the nascent industry of flexible microelectronics: the self-heating effect of thin film transistors (TFTs), the thermal and mechanical durability of flexible devices, and the cost issue. The self-heating effect is controlled through TFT shape, TFT electrical performance, dimensional reduction and energy-efficient circuits. Plastic engineering is one of the keys to solving thermal and mechanical durability problems faced by flexible microelectronics devices. For the Suftla flexible microelectronics business to be viable, Suftla transfer yield must be sufficiently high to keep down device cost. Improving the transfer yield is not easy, but it is the same challenge already faced and cleared in the TFT liquid crystal display industry.

  • PDF

Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures (양극산화된 TiO2 및 WO3 나노구조체로 구성된 광전기변색 소자 제작)

  • Lee, Sanghoon;Cha, Hyeongcheol;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.326-330
    • /
    • 2015
  • In this study, we demonstrate the photoelectrochromic devices composed of $TiO_2$ and $WO_3$ nanostructures prepared by anodization method. The morphology and the crystal structure of anodized $TiO_2$ nanotubes and $WO_3$ nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a $TiO_2$ nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at $450^{\circ}C$ for 1 hr. The photoelectrode of $TiO_2$ nanotube and the counter electrode of $WO_3$ nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM $I_2$ as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-$WO_3$ electrode system shows better electrochromic performance compared to $WO_3$ electrode.

Study on The Anti-Shock Performance Evaluation of TFT-LCD module for Mobile IT Devices (이동형 정보통신 기기용 화면표시 장치의 내충격 평가 방법 연구)

  • Kim Byung-Sun;Kim Jung-Woo;Lee Dock-Jin;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun;Chu Young-Bee;Koo Ja-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.130-137
    • /
    • 2006
  • TFT-LCD(Thin Film Transistor Liquid Crystal Display) module is representative commercial product of FPD(Flat Panel Display). Thickness of TFT-LCD module is very thin. It is adopted for major display unit for IT devices such as Cellular Phone, Camcorder, Digital camera and etc. Due to the harsh user environment of mobile IT devices, it requires complicated structure and tight assembly. And user requirements for the mechanical functionalities of TFT-LCD module become more strict. However, TFT-LCD module is normally weak to high level transient mechanical shock. Since it uses thin crystallized panel. Therefore, anti-shock performance is classified as one of the most important design specifications. Traditionally, the product reliability against mechanical shock is confirmed by empirical method in the design-prototype-drop/impact test-redesign paradigm. The method is time-consuming and expensive process. It lacks scientific insight and quantitative evaluation. In this article, a systematic design evaluation of TFT-LCD module for mobile IT devices is presented with combinations of FEA and testing to support the optimal shock proof display design procedure.

Studies of electrokinetic motion of fullerene in liquid crystal medium for electronic paper displays (전자종이 표시소자를 위한 수평전기장에서의 플러렌 움직임 연구)

  • Kim, Mi-Young;Kim, Sung-Min;Jo, Eun-Mi;Choi, Jung-Hun;Hwang, Ji-Hye;Srivastava, Anoop Kumar;Lee, Myong-Hoon;Lee, Seung-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.63-64
    • /
    • 2008
  • Electrokinetic motion of fullerene ($C_{60}$) particles in liquid crystal (LC) medium under an in-plane electric field has been studied for the application to the electronic paper display. Fullerenes move in the direction of applied electric field due to interaction between the induced dipole moment on $C_{60}$ and external electric field at lower threshold voltages compared to other devices such as QR-LPD (Quick Response Liquid Powder Display) and TBD (Twisting Ball Display). We also confirmed the bistability of fullerene particles in LC medium and the results showed that the 87% and 81% of original reflectance or transmittance of image was retained after 24 hours and 48 hours respectively. Our studies show the possibility that fullerenes can be used for electronic paper display.

  • PDF

Environmental Impacts Assessment of ITO (Indium Tin Oxide) Using Material Life Cycle Assessment (물질전과정평가(MLCA)를 통한 투명전극 ITO (Indium Tin Oxide)의 환경성 평가)

  • Lee, Soo-Sun;Lee, Na-Ri;Kim, Kyeong-Il;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • In this study, we executed an environmental impact assessment about recycling of ITO (Indium Tin Oxide), used for touch panel. ITO is mainly used to make transparent conductive coatings for touch and flat screen LCD (Liquid Crystal Display), ELD (Emitting Light Device), PDP (Plasma Display Panel). This demand is increasing little by little. but form current status, ITO is discarded than recycling. It is important to recycling ITO for national strategies about resource conservation, and reduce environmental burden. Also Landfill or incineration of ITO cloud be harmful to the human health in the long-term. Material Life Cycle Assessment method (MLCA) was conducted for comparison landfill and recycling of ITO. MLCA would provide more information for environmental issues and potential environmental impacts of ITO. The study includes two scenarios, the basic scenario is recycling of ITO (10, 20, 30%) and the other scenario is landfill of ITO. In addition, amount of carbon dioxide and energy were calculated.