Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.5.326

Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures  

Lee, Sanghoon (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
Cha, Hyeongcheol (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of Powder Materials / v.22, no.5, 2015 , pp. 326-330 More about this Journal
Abstract
In this study, we demonstrate the photoelectrochromic devices composed of $TiO_2$ and $WO_3$ nanostructures prepared by anodization method. The morphology and the crystal structure of anodized $TiO_2$ nanotubes and $WO_3$ nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a $TiO_2$ nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at $450^{\circ}C$ for 1 hr. The photoelectrode of $TiO_2$ nanotube and the counter electrode of $WO_3$ nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM $I_2$ as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-$WO_3$ electrode system shows better electrochromic performance compared to $WO_3$ electrode.
Keywords
Electrochromism; Photoelectrochromic Devices; $TiO_2$ nanotubes; $WO_3$ nanoporous layers; Anodization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. G. Granqvist: Sol. Energy Mater. Sol. Cells, 60 (2000) 201.   DOI
2 S. K. Deb: Appl. Opt., 8 (1969) 192.   DOI
3 R. J. Colton, A. M. Guzman and J. W. Rabalais: Acc. Chem. Res., 11 (1978) 170.   DOI
4 K. Hyodo: Electrochim. Acta, 39 (1994) 265.   DOI
5 C. G. Granqvist: Solid State Ionics, 53 (1992) 479.
6 C. Bechinger, S. Ferrere, A. Zaban, J. Sprague and B. A. Gregg: Nature, 383 (1996) 608.   DOI
7 A. Hauch, A. Georg, S. Baumgartner, U. Opara Krasovec and B. Orel: Electrochim. Acta, 46 (2001) 2131.   DOI
8 K. Lee, A, Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385.   DOI
9 J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker: J. Am. Chem. Soc., 130 (208) 13364.   DOI
10 A. Ghicov, S. P. Albu, J. M. Macak and P. Schmuki: Small, 4 (2008) 1063.   DOI
11 D. Wang, Y. Liu, B. Yu, F. Zhou and W. Liu: Chem. Mater., 21 (2009) 1198.   DOI
12 Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777.   DOI
13 T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Electrochem. Commun., 57 (2015) 65.   DOI
14 Y.-C. Nah, N. K. Shrestha, D. Kim and P. Schmuki: J. Appl. Electrochem., 43 (2013) 9.   DOI
15 T.-H. Kim, J.-W. Lee, B.-S. Kim, H. Cha and Y.-C. Nah: Microporous Mesoporous Mat., 196 (2014) 41.   DOI