DOI QR코드

DOI QR Code

Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures

양극산화된 TiO2 및 WO3 나노구조체로 구성된 광전기변색 소자 제작

  • Lee, Sanghoon (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Cha, Hyeongcheol (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
  • 이상훈 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 차형철 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2015.10.11
  • Accepted : 2015.10.20
  • Published : 2015.10.28

Abstract

In this study, we demonstrate the photoelectrochromic devices composed of $TiO_2$ and $WO_3$ nanostructures prepared by anodization method. The morphology and the crystal structure of anodized $TiO_2$ nanotubes and $WO_3$ nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a $TiO_2$ nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at $450^{\circ}C$ for 1 hr. The photoelectrode of $TiO_2$ nanotube and the counter electrode of $WO_3$ nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM $I_2$ as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-$WO_3$ electrode system shows better electrochromic performance compared to $WO_3$ electrode.

Keywords

References

  1. C. G. Granqvist: Sol. Energy Mater. Sol. Cells, 60 (2000) 201. https://doi.org/10.1016/S0927-0248(99)00088-4
  2. S. K. Deb: Appl. Opt., 8 (1969) 192. https://doi.org/10.1364/AO.8.S1.000192
  3. R. J. Colton, A. M. Guzman and J. W. Rabalais: Acc. Chem. Res., 11 (1978) 170. https://doi.org/10.1021/ar50124a008
  4. K. Hyodo: Electrochim. Acta, 39 (1994) 265. https://doi.org/10.1016/0013-4686(94)80062-6
  5. C. G. Granqvist: Solid State Ionics, 53 (1992) 479.
  6. C. Bechinger, S. Ferrere, A. Zaban, J. Sprague and B. A. Gregg: Nature, 383 (1996) 608. https://doi.org/10.1038/383608a0
  7. A. Hauch, A. Georg, S. Baumgartner, U. Opara Krasovec and B. Orel: Electrochim. Acta, 46 (2001) 2131. https://doi.org/10.1016/S0013-4686(01)00391-7
  8. K. Lee, A, Mazare and P. Schmuki: Chem. Rev., 114 (2014) 9385. https://doi.org/10.1021/cr500061m
  9. J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki and A. B. Walker: J. Am. Chem. Soc., 130 (208) 13364. https://doi.org/10.1021/ja804852z
  10. A. Ghicov, S. P. Albu, J. M. Macak and P. Schmuki: Small, 4 (2008) 1063. https://doi.org/10.1002/smll.200701244
  11. D. Wang, Y. Liu, B. Yu, F. Zhou and W. Liu: Chem. Mater., 21 (2009) 1198. https://doi.org/10.1021/cm802384y
  12. Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777. https://doi.org/10.1016/j.elecom.2008.09.017
  13. T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Electrochem. Commun., 57 (2015) 65. https://doi.org/10.1016/j.elecom.2015.05.008
  14. Y.-C. Nah, N. K. Shrestha, D. Kim and P. Schmuki: J. Appl. Electrochem., 43 (2013) 9. https://doi.org/10.1007/s10800-012-0498-x
  15. T.-H. Kim, J.-W. Lee, B.-S. Kim, H. Cha and Y.-C. Nah: Microporous Mesoporous Mat., 196 (2014) 41. https://doi.org/10.1016/j.micromeso.2014.04.056

Cited by

  1. Synthesis and Photo Catalytic Activity of 10 wt%, 20 wt%Li-TiO2 Composite Powders vol.23, pp.1, 2016, https://doi.org/10.4150/KPMI.2016.23.1.33
  2. Photocatalytic and Adsorption Properties of WO3 Nanorods Prepared by Hydrothermal Synthesis vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.483