• Title/Summary/Keyword: linear predictive

Search Result 509, Processing Time 0.031 seconds

Linear Model Predictive Control of 6-DOF Remotely Operated Underwater Vehicle Using Nonlinear Robust Internal-loop Compensator (비선형 강인 내부루프 보상기를 이용한 6자유도 원격조종 수중로봇의 선형 모델예측 제어)

  • Junsik Kim;Yuna Choi;Dongchul Lee;Youngjin Choi
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2024
  • This paper proposes a linear model predictive control of 6-DOF remotely operated underwater vehicles using nonlinear robust internal-loop compensator (NRIC). First, we design a integrator embedded linear model prediction controller for a linear nominal model, and then let the real model follow the values calculated through forward dynamics. This work is carried out through an NRIC and in this process, modeling errors and external disturbance are compensated. This concept is similar to disturbance observer-based control, but it has the difference that H optimality is guaranteed. Finally, tracking results at trajectory containing the velocity discontinuity point and the position tracking performance in the disturbance environment is confirmed through the comparative study with a traditional inverse dynamics PD controller.

Analysis and Novel Predictive Control of current control for Permanent Magnet Linear Synchronous Motor using SVPWM (SVPWM을 이용한 PMLSM의 전류 제어 분석과 새로운 예측 전류 제어)

  • Sun, Jung-Won;Lee, Jin-Woo;Shu, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.236-238
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMLSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are that the measured stator current is tracked the command current value accurately and the transient interval is shorten as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that take to apply the voltage to motor. A new control strategy is the schema that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the simulation results will be verified the improvements of Predictive controller and accuracy of the current controller.

  • PDF

Static Output Feedback Model Predictive Tracking Control for Linear Systems with Uncertainty

  • Kim, San-Gun;Lee, Sang-Moon;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.292-295
    • /
    • 2003
  • In this paper, we present static output feedback model predictive tracking control for linear system with uncertainty. The proposed control law is based on integral action form to provide zero o��set for constant command signals and the closed loop stability is guaranteed under linear matrix inequality conditions on the terminal weighting matrix using the decreasing monotonicity property of the performance index. Through simulation examples, we illustrate that the proposed schemes can be appropriate tracking controllers for uncertain system.

  • PDF

Recognition of Noise Quantity by Neural Network using Linear Predictive Coefficient (선형예측계수를 사용한 신경회로망에 의한 잡음량의 인식)

  • Choi, Jae-Seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • In order to reduce the noise quantity in a conversation under the noisy environment, it is necessary for the signal processing system to process adaptively according to the noise quantity in order to enhance the performance. There fore this paper presents a recognition method for noise quantity by linear predictive coefficient using a three layered neural network, which is trained using three kinds of speech that is degraded by various background noises. In the experiment, the average values of the recognition results were 97.6% or more for various noises using Aurora2 database.

  • PDF

Model Predictive Control for Input Constrained Systems with Time-varying Delay (시변 시간지연을 가지는 입력제한 시스템의 모델예측제어)

  • Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Water consumption prediction based on machine learning methods and public data

  • Kesornsit, Witwisit;Sirisathitkul, Yaowarat
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 2022
  • Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption pattern is challenging task. This study investigates the performance of predictive models based on multi-layer perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 - 2015 were compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which in turn reduced the computation time and other resources required while performing the predictive task. It can be concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for both of all variables and selected variables cases. These findings support important implications and serve as a feasible water consumption predictive model and can be used for water resources management to produce sufficient tap water to meet the demand in each province of Thailand.

The Linear Density Predictive Models on the On-Ramp Junction in the Urban Freeway (도시고속도로의 진입연결로 접속부내 선형의 밀도예측모형 구축에 관한 연구)

  • Kim, Tae Gon;Shin, Kwang Sik;Kim, Seung Gil;Kim, Jeong Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.59-66
    • /
    • 2006
  • This study was to construct the linear density predictive models on the on-ramp junctions in urban freeway. From the analyses of the real-time traffic characteristic data, and the construction and verification of the linear density predictive models, the models showed a considerable explanatory power with the determination coefficients ($R^2$) of over 0.7 between the density and speed data. Also, they showed a considerably high correlativeness with the correlation coefficients (r) of over 0.8 between the calculated density data and the expected ones estimated by the models.

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

Optimal Control of a Coarse/Fine Position Control System with Constraints (제한조건물 고려한 조미동 위치제어 시스템의 최적제어)

  • 주완규;최기상;최기흥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.344-344
    • /
    • 2000
  • Recently, the demand for high precision and large stroke in linear positioning systems is increasing in industry. A coarse-fine position control system composed of a linear motor and a piezoelectric actuator has such characteristics. Many optimal control laws have been applied to the position control of coarse-fine actuators but most of them did not take account into constraints. In this study, model predictive control (MPC) method with constraints is applied to the position control of the coarse-fine actuator and the performance of MPC is compared with those of conventional control laws.

  • PDF

Adaptive predictive level control of waste heat steam boiler based on bilinear model (쌍일차 모델을 이용한 폐열 스팀 보일러의 액위 적응 예측 제어)

  • Oh, Sea-Cheon;Yeo, Yeong-Koo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.344-350
    • /
    • 1996
  • An adaptive predictive level control of waste heat steam boiler was studied by using mathematical models considering the inverse response. The simulation experiments of the model identification were performed by using linear and bilinear models. From the results of simulations it was found that the bilinear model represented the actual dynamic behavior of steam boiler very well. ARMA model was used in the model identification and the adaptive predictive controller. To verify the performance and effectiveness of the adaptive predictive controller used in this study the simulation results of the adaptive predictive level control for waste heat steam boiler based on bilinear model were compared to those of P, PI and PID controller. The results of simulations showed that the adaptive predictive controller provides the fast arrival to setpoint of liquid level.

  • PDF