Browse > Article
http://dx.doi.org/10.12989/acd.2022.7.2.113

Water consumption prediction based on machine learning methods and public data  

Kesornsit, Witwisit (Government Data Solution Division, Department of Data Solution, Digital Government Development Agency (Public Organization))
Sirisathitkul, Yaowarat (Department of Computer Engineering and Electronics, School of Engineering and Technology, Walailak University)
Publication Information
Advances in Computational Design / v.7, no.2, 2022 , pp. 113-128 More about this Journal
Abstract
Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption pattern is challenging task. This study investigates the performance of predictive models based on multi-layer perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 - 2015 were compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which in turn reduced the computation time and other resources required while performing the predictive task. It can be concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for both of all variables and selected variables cases. These findings support important implications and serve as a feasible water consumption predictive model and can be used for water resources management to produce sufficient tap water to meet the demand in each province of Thailand.
Keywords
artificial neural network; machine learning; multi-layer perceptron; multiple linear regression; predictive model; stepwise regression; support vector regression; water consumption;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Smolak, K., Kasieczka, B., Fialkiewicz, W., Rohm, W., Sila-Nowicka, K. and Kopanczyk, K. (2020), "Applying human mobility and water consumption data for short-term water demand forecasting using classical and machine learning models", Urban Water J., 17(1), 32-42. https://doi.org/10.1080/1573062X.2020.1734947.   DOI
2 Stampoulis, D., Damavandi, H.G., Boscovic, D. and Sabo, J. (2021), "Using satellite remote sensing and machine learning techniques towards precipitation prediction and vegetation classification", J. Environ. Inform., 37(1), 1-15. https://doi.org/10.3808/jei.202000427.   DOI
3 Thai Meteorological Department (2019), Thailand meteorological department API: TMDAPI in Thailand climate standard normal value 1981-2010. https://data.tmd.go.th/api/index1.php.
4 UN Water (2020), UN World Water Development Report 2020. https://www.unwater.org/publications/world-water-development-report-2020.
5 Wei, H.W., Hassan, M., Che, Y., Peng, Q.K., Wang, Q., Su, Y.L. and Xie, B. (2021), "Spatio-temporal characteristics and source apportionment of water pollutants in upper reaches of Maotiao River, Southwest of China, from 2003 to 2015", J. Environ. Inform., 37(2), 93-106. http://doi.org/10.3808/jei.201900415.   DOI
6 Pahlavan-Rad, M.R., Dahmardeh, K., Hadizadeh, M., Keykha, G., Mohammadnia, N., Gangali, M., Keikha, M., Davatgar, N. and Brungard, C. (2020), "Prediction of soil water infiltration using multiple linear regression and random forest in a dry flood plain, eastern Iran", Catena, 194, 104715. https://doi.org/10.1016/j.catena.2020.104715.   DOI
7 Romano, M. and Kapelan, Z. (2014), "Adaptive water demand forecasting for near real-time management of smart water distribution systems", Environ. Model. Softw., 60, 265-276. https://doi.org/10.1016/j.envsoft.2014.06.016.   DOI
8 Sahu, K.K., Nayak, S.C. and Behera, H.S. (2021), "Multi-step-ahead exchange rate forecasting for South Asian countries using multi-verse optimized multiplicative functional link neural networks", Karbala Int. J. Mod. Sci., 7(1), 48-60. https://doi.org/10.33640/2405-609X.2278.   DOI
9 Sattar, A.M.A., Ertugrul, O.F., Gharabaghi, B., McBean, E.A. and Cao, J. (2019), "Extreme learning machine model for water network management", Neural Comput. Appl., 31(1), 157-169. https://doi.org/10.1007/s00521-017-2987-7.   DOI
10 Seo, Y., Kwon, S. and Choi, Y. (2018), "Short-term water demand forecasting model combining variational mode decomposition and extreme learning machine", Hydrology, 5(4), 54. https://doi.org/10.3390/hydrology5040054.   DOI
11 Sirisathitkul, Y., Thanathamathee, P. and Aekwarangkoon, S. (2019), "Predictive apriori algorithm in youth suicide prevention by screening depressive symptoms from patient health questionnaire-9", TEM J., 8(4), 1449-1455. https://dx.doi.org/10.18421/TEM84-49.   DOI
12 Wongso, E., Nateghi, R., Zaitchik, B., Quiring, S. and Kumar, R. (2020), "A data-driven framework to characterize state-level water use in the United States", Water Resour. Res., 56(9), e2019WR024894. https://doi.org/10.1029/2019WR024894.   DOI
13 Xiao, Y., Fang, L. and Hipel, K.W. (2021), "Conservation-targeted hydrologic-economic models for water demand management", J. Environ. Inform., 37(1), 49-61. http://doi.org/10.3808/jei.201900418.   DOI
14 Yang, Y., Huang, T.T., Shi, Y.Z., Wendroth, O. and Liu, B.Y. (2021), "Comparing the performance of an autoregressive state-space approach to the linear regression and artificial neural network for streamflow estimation", J. Environ. Inform., 37(1), 36-48. https://doi.org/10.3808/jei.202000440.   DOI
15 Wu, L. and Zhou, H. (2010), "Urban water demand forecasting based on HP filter and fuzzy neural network", J. Hydroinformatics, 12(2), 172-184. https://doi.org/10.2166/hydro.2009.082.   DOI
16 Al-Hamad, M.Y. and Qamber, I.S. (2019), "GCC electrical long-term peak load forecasting modeling using ANFIS and MLR methods", Arab J. Basic Appl. Sci., 26(1), 269-282. https://doi.org/10.1080/25765299.2019.1565464.   DOI
17 Ghani, I.M.M. and Ahmad, S. (2010), "Stepwise multiple regression method to forecast fish landing", Procedia Soc. Behav. Sci., 8, 549-554. https://doi.org/10.1016/j.sbspro.2010.12.076.   DOI
18 National Strategy Secretariat Office (2019), National strategy 2018-2037 (summary). https://www.moac.go.th/pyp-dwl-files-402791791893.
19 Adamowski, J. and Karapataki, C. (2010), "Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: evaluation of different ANN learning algorithms", J. Hydrol. Eng., 15(10), 729-743. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245.   DOI
20 Arora, M., Dhawan, S. and Singh, K. (2021), "Improved performance of machine learning algorithms for prognosis of cervical cancer", Adv. Comput. Des., 6(3), 191-205. http://doi.org/10.12989/acd.2021.6.3.191.   DOI
21 Liu, H. and Cocea, M. (2017), "Semi-random partitioning of data into training and test sets in granular computing context", Granul. Comput., 2, 357-386. https://doi.org/10.1007/s41066-017-0049-2.   DOI
22 Campos, D.S., Tadano, Y.S., Alves, T.A., Siqueira, H.V. and Marinho, M.H.N. (2020), "Unorganized machines and linear multivariate regression model applied to atmospheric pollutant forecasting", Acta Sci. Technol., 42(1), e48203. https://doi.org/10.4025/actascitechnol.v42i1.48203.   DOI
23 Davis, J.H. (2011), Multiple linear regression. In: Davis, J.H. (Ed.), Statistics for Compensation: A Practical Guide to Compensation Analysis, John Wiley & Sons, New Jersey, U.S.A. https://doi-org /10.1002/9780470946428.ch17.   DOI
24 Donkor, E.A., Mazzuchi, T.H., Soyer, R. and Roberson, J.A. (2014), "Urban water demand forecasting: Review of methods and models", J. Water Resour. Plan. Manag., 140, 146-159. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000314.   DOI
25 Zubaidi, S.L., Ortega-Martorell, S., Kot, P., Al-Khaddar, R., Abdellatif, M., Gharghan, S.K., Ahmed, M.S. and Hashim, K.S. (2020b), "A method for predicting long-term municipal water demands under climate change", Water Resour. Manag., 34(3), 1265-1279. https://doi.org/10.1007/s11269-020-02500-z.   DOI
26 Olyaie, E., Abyaneh, H.Z. and Danandeh Mehr, A.D. (2017), "A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River", Geosci. Front., 8(3), 517-527. https://doi.org/10.1016/j.gsf.2016.04.007.   DOI
27 Oyebode, O. and Ighravwe, D.E. (2019), "Urban water demand forecasting: A comparative evaluation of conventional and soft computing techniques", Resources, 8(3), 156. https://doi.org/10.3390/resources8030156.   DOI
28 Zhong, H., Wang, J., Jia, H., Mu, Y. and Lv, S. (2019), "Vector field-based support vector regression for building energy consumption prediction", Appl. Energy, 242, 403-414. https://doi.org/10.1016/j.apenergy.2019.03.078.   DOI
29 Zubaidi, S.L., Dooley, J., Al-Khaddar, R., Abdellatif, M., Al-Bugharbee, H. and Ortega-Martorell, S. (2018), "A novel approach for predicting monthly water demand by combining singular spectrum analysis with neural networks", J. Hydrol., 561, 136-145. https://doi.org/10.1016/j.jhydrol.2018.03.047.   DOI
30 Zubaidi, S.L., Ortega-Martorell, S., Al-Bugharbee, H., Olier, I., Hashim, K.S., Gharghan, S.K., Kot, P. and Al-Khaddar, R. (2020a), "Urban water demand prediction for a city that suffers from climate change and population growth: Gauteng province case study", Water, 12(7), 1885. https://doi.org/10.3390/w12071885.   DOI
31 Thinakaran, K., Rajasekar, R., Santhi, K. and Nalini, M. (2020), "Predicting the 2-dimensional airfoil by using machine learning methods", Adv. Comput. Des., 5(3), 291-304. http://doi.org/10.12989/acd.2020.5.3.291.   DOI
32 Bata, M., Carriveau, R. and Ting, D.S.K. (2020), "Short-term water demand forecasting using hybrid supervised and unsupervised machine learning model", Smart Water, 5, 2. https://doi.org/10.1186/s40713-020-00020-y.   DOI
33 Oyebode, O., Babatunde, D.E., Monyei, C.G. and Babatunde, O.M. (2019), "Water demand modelling using evolutionary computation techniques: Integrating water equity and justice for realization of the sustainable development goals", Heliyon, 5(11), e02796. https://doi.org/10.1016/j.heliyon.2019.e02796.   DOI
34 Abba, S.I., Hadi, S.J., Sammen, S.S., Salih, S.Q., Abdulkadir, R.A., Pham, Q.B. and Yaseen, Z.M. (2020a), "Evolutionary computational intelligence algorithm coupled with self-tuning predictive model for water quality index determination", J. Hydrol., 587, 124974. https://doi.org/10.1016/j.jhydrol.2020.124974.   DOI
35 Agarwal, S., Dandge, S.S. and Chakraborty, S. (2020), "A support vector machine-based prediction model for electrochemical machining process", Karbala Int. J. Mod. Sci., 6(2), 164-174. https://doi.org/10.33640/2405-609X.1508.   DOI
36 Ahmad, T. and Chen, H. (2018), "Utility companies strategy for short-term energy demand forecasting using machine learning based models", Sustain. Cities Soc., 39, 401-417. https://doi.org/10.1016/j.scs.2018.03.002.   DOI
37 Altunkaynak, A. and Nigussie, T.A. (2018), "Monthly water demand prediction using wavelet transform, first-order differencing and linear detrending techniques based on multilayer perceptron models", Urban Water J., 15(2), 177-181. https://doi.org/10.1080/1573062X.2018.1424219.   DOI
38 Benitez, R., Ortiz-Caraballo, C., Preciado, J.C., Conejero, J.M., Figueroa, F.S. and Rubio-Largo, A. (2019), "A short-term databased water consumption prediction approach", Energies, 12(12), 2359. https://doi.org/10.3390/en12122359.   DOI
39 Candelieri, A., Soldi, D. and Archetti, F. (2015), "Short-term forecasting of hourly water consumption by using automatic metering readers data", Procedia Eng., 119, 844-853. https://doi.org/10.1016/j.proeng.2015.08.948.   DOI
40 Cetinkaya, A. and Baykan, O.K. (2020), "Prediction of middle school students' programming talent using artificial neural networks", Eng. Sci. Technol., 23(6), 1301-1307. https://doi.org/10.1016/j.jestch.2020.07.005.   DOI
41 Farizawani, A.G., Puteh, M., Marina, Y. and Rivaie, A. (2020), "A review of artificial neural network learning rule based on multiple variant of conjugate gradient approaches", J. Phys. Conf. Ser., 1529(2), 022040. https://doi.org/10.1088/1742-6596/1529/2/022040.   DOI
42 Mouatadid, S. and Adamowki, J. (2016), "Using extreme learning machines for short-term urban water demand forecasting", Urban Water J., 14(6), 630-638. https://doi.org/10.1515/jwld-2016-0004.   DOI
43 Ghalehkhondabi, I., Ardjmand, E., Young, W.A. and Weckman, G.R. (2017), "Water demand forecasting: Review of soft computing methods", Environ. Monit. Assess., 189, 313. https://doi.org/10.1007/s10661-017-6030-3.   DOI
44 Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R. and Zhu, X. (2018), "Short-term water demand forecast based on deep learning method", J. Water Resour. Plan. Manag., 144(12), 04018076. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000992.   DOI
45 Herrera, M., Torgo, L., Izquierdo, J. and Perez-Garcia, R. (2010), "Predictive models for forecasting hourly urban water demand", J. Hydrol., 387(1-2), 141-150. https://doi.org/10.1016/j.jhydrol.2010.04.005.   DOI
46 National Statistical Office (2019), Statistical data. http://web.nso.go.th.
47 Anand, A. and Suganthi, L. (2018), "Hybrid GA-PSO optimization of artificial neural network for forecasting electricity demand", Energies, 11(4), 728. https://doi.org/10.3390/en11040728.   DOI
48 Digital Government Development Agency (2019), Open government data of Thailand. https://data.go.th.
49 de Souza Groppo, G., Costa, M.A. and Libanio, M. (2019), "Predicting water demand: A review of the methods employed and future possibilities", Water Supply, 19(8), 2179-2198. https://doi.org/10.2166/ws.2019.122.   DOI
50 Abba S.I., Pham, Q.B., Saini, G., Linh, N.T.T., Ahmed, A.N., Mohajane, M., Khaledian, M., Abdulkadir, R.A. and Bach, Q.V. (2020b), "Implementation of data intelligence models coupled with ensemble machine learning for prediction of water quality index", Environ. Sci. Pollut. Res., 27, 41524-41539. https://doi.org/10.1007/s11356-020-09689-x.   DOI