• 제목/요약/키워드: linear functional equation

검색결과 91건 처리시간 0.025초

HOMOMORPHISMS BETWEEN C*-ALGEBRAS ASSOCIATED WITH THE TRIF FUNCTIONAL EQUATION AND LINEAR DERIVATIONS ON C*-ALGEBRAS

  • Park, Chun-Gil;Hou, Jin-Chuan
    • 대한수학회지
    • /
    • 제41권3호
    • /
    • pp.461-477
    • /
    • 2004
  • It is shown that every almost linear mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication, and that every almost linear continuous mapping h : A\longrightarrowB of a unital $C^{*}$ -algebra A of real rank zero to a unital $C^{*}$ -algebra B is a homomorphism under some condition on multiplication. Furthermore, we are going to prove the generalized Hyers-Ulam-Rassias stability of *-homomorphisms between unital $C^{*}$ -algebras, and of C-linear *-derivations on unital $C^{*}$ -algebras./ -algebras.

ON AN L-VERSION OF A PEXIDERIZED QUADRATIC FUNCTIONAL INEQUALITY

  • Chung, Jae-Young
    • 호남수학학술지
    • /
    • 제33권1호
    • /
    • pp.73-84
    • /
    • 2011
  • Let f, g, h, k : $\mathbb{R}^n{\rightarrow}\mathbb{C}$ be locally integrable functions. We deal with the $L^{\infty}$-version of the Hyers-Ulam stability of the quadratic functional inequality and the Pexiderized quadratic functional inequality $${\parallel}f(x + y) + f(x - y) -2f(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ $${\parallel}f(x + y) + g(x - y) -2h(x) - 2f(y){\parallel}_{L^{\infty}(\mathbb{R}^n)}\leq\varepsilon$$ based on the concept of linear functionals on the space of smooth functions with compact support.

EXISTENCE OF NON-CONSTANT POSITIVE SOLUTION OF A DIFFUSIVE MODIFIED LESLIE-GOWER PREY-PREDATOR SYSTEM WITH PREY INFECTION AND BEDDINGTON DEANGELIS FUNCTIONAL RESPONSE

  • MELESE, DAWIT
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.393-407
    • /
    • 2022
  • In this paper, a diffusive predator-prey system with Beddington DeAngelis functional response and the modified Leslie-Gower type predator dynamics when a prey population is infected is considered. The predator is assumed to predate both the susceptible prey and infected prey following the Beddington-DeAngelis functional response and Holling type II functional response, respectively. The predator follows the modified Leslie-Gower predator dynamics. Both the prey, susceptible and infected, and predator are assumed to be distributed in-homogeneous in space. A reaction-diffusion equation with Neumann boundary conditions is considered to capture the dynamics of the prey and predator population. The global attractor and persistence properties of the system are studied. The priori estimates of the non-constant positive steady state of the system are obtained. The existence of non-constant positive steady state of the system is investigated by the use of Leray-Schauder Theorem. The existence of non-constant positive steady state of the system, with large diffusivity, guarantees for the occurrence of interesting Turing patterns.

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • 대한수학회보
    • /
    • 제33권4호
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

범함수 정의역 분할에 바탕을 둔 비선형 계층적 움직임 추정기법 (Nonlinear hierarchical motion estimation method based on decompositionof the functional domain)

  • 심동규;박래홍
    • 한국통신학회논문지
    • /
    • 제21권4호
    • /
    • pp.807-821
    • /
    • 1996
  • In this paper, we proposed a nonlinear hierarchical mtion estimation method. Generally, the conventional hierarchical motion estimation methods have been proposed for fast convergence and detection of large motions. But they have a common drawback that large error in motion estimation is propapated across motion discontinuities. This artifiact is due to the constriaint of motion continuity and the linear interpolation of motion vectors between hierarchical levels. In this paper, we propose an effective hierarchical motion estimation mechod that is robust to motion discontinuities. The proposed algorithm is based on the decomposition of the functional domain for optimizing the intra-level motion estimation functional. Also, we propose an inter-level nonlinear motion estimation equation rather than using the conventional linearprojection scheme of motion field. computer simulations with several test sequences show tht the proposed algorithm performs better than several conventional methods.

  • PDF

CONTROLLABILITY FOR TRAJECTORIES OF SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kang, Yong Han
    • 대한수학회보
    • /
    • 제55권1호
    • /
    • pp.63-79
    • /
    • 2018
  • In this paper, we first consider the existence and regularity of solutions of the semilinear control system under natural assumptions such as the local Lipschtiz continuity of nonlinear term. Thereafter, we will also establish the approximate controllability for the equation when the corresponding linear system is approximately controllable.

MONOTONE METHOD FOR NONLINEAR HILFER FRACTIONAL REACTION-DIFFUSION EQUATIONS

  • Pandurang D. Kundgar;Jagdish A. Nanware;Gunvant A. Birajdar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권3호
    • /
    • pp.753-767
    • /
    • 2024
  • In this paper, we developed the existence and uniqueness results by monotone method for non-linear fractional reaction-diffusion equation together with initial and boundary conditions. In this text the Hilfer fractional derivative is used to denote the time fractional derivative. The employment of monotone method generates two sequences of minimal and maximal solutions which converges to lower and upper solutions respectively.

ON A GENERALIZED TRIF'S MAPPING IN BANACH MODULES OVER A C*-ALGEBRA

  • Park, Chun-Gil;Rassias Themistocles M.
    • 대한수학회지
    • /
    • 제43권2호
    • /
    • pp.323-356
    • /
    • 2006
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$mn_{mn-2}C_{k-2}f(\frac {x_1+...+x_{mn}} {mn})$$ $(\ddagger)\;+mn_{mn-2}C_{k-1}\;\sum\limits_{i=1}^n\;f(\frac {x_{mi-m+1}+...+x_{mi}} {m}) =k\;{\sum\limits_{1{\leq}i_1<... if and only if the mapping $f : X{\rightarrow}Y$ is additive, and we prove the Cauchy-Rassias stability of the functional equation $(\ddagger)$ in Banach modules over a unital $C^*-algebra$. Let A and B be unital $C^*-algebra$ or Lie $JC^*-algebra$. As an application, we show that every almost homomorphism h : $A{\rightarrow}B$ of A into B is a homomorphism when $h(2^d{\mu}y) = h(2^d{\mu})h(y)\;or\;h(2^d{\mu}\;o\;y)=h(2^d{\mu})\;o\;h(y)$ for all unitaries ${\mu}{\in}A,\;all\;y{\in}A$, and d = 0,1,2,..., and that every almost linear almost multiplicative mapping $h:\;A{\rightarrow}B$ is a homomorphism when h(2x)=2h(x) for all $x{\in}A$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^*-algebras$ or in Lie $JC^*-algebras$, and of Lie $JC^*-algebra$ derivations in Lie $JC^*-algebras$.

THE STABILITY OF LINEAR MAPPINGS IN BANACH MODULES ASSOCIATED WITH A GENERALIZED JENSEN MAPPING

  • Lee, Sung Jin
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.287-301
    • /
    • 2011
  • Let X and Y be vector spaces. It is shown that a mapping $f\;:\;X{\rightarrow}Y$ satisfies the functional equation $$(\ddag)\hspace{50}dk\;f\left(\frac{\sum_{j=1}^{dk}x_j}{dk}\right)=\displaystyle\sum_{j=1}^{dk}f(x_j)$$ if and only if the mapping $f$ : X ${\rightarrow}$ Y is Cauchy additive, and prove the Cauchy-Rassias stability of the functional equation ($\ddag$) in Banach modules over a unital $C^{\ast}$-algebra. Let $\mathcal{A}$ and $\mathcal{B}$ be unital $C^{\ast}$-algebras. As an application, we show that every almost homomorphism $h\;:\;\mathcal{A}{\rightarrow}\mathcal{B}$ of $\mathcal{A}$ into $\mathcal{B}$ is a homomorphism when $h((k-1)^nuy)=h((k-1)^nu)h(y)$ for all unitaries $u{\in}\mathcal{A}$, all $y{\in}\mathcal{A}$, and $n$ = 0,1,2,$\cdots$. Moreover, we prove the Cauchy-Rassias stability of homomorphisms in $C^{\ast}$-algebras.