• Title/Summary/Keyword: linear eigenvalue problem

Search Result 96, Processing Time 0.027 seconds

A Stability Region of Time-varying Perturbations by Using Generalized Eigenvalue Problem (일반화된 고유치 문제를 이용한 시변 섭동의 안정 범위)

  • Lee, Dal-Ho;Han, Hyung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.901-906
    • /
    • 2005
  • The stability robustness problem of continuous linear systems with nominal and delayed time-varying perturbations is considered. In the previous results, the entire bound was derived only for the overall perturbations without separation of the perturbations. In this paper, the sufficient condition for stability of the system with two perturbations, which are nominal and delayed, is expressed as linear matrix inequalities(LMIs). The corresponding stability bounds fer those two perturbations are determined by LMI(Linear Matrix Inequality)-based generalized eigenvalue problem. Numerical examples are given to compare with the previous results and show the effectiveness of the proposed.

Effects of load height application and pre-buckling deflections on lateral buckling of thin-walled beams

  • Mohri, F.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.6 no.5
    • /
    • pp.401-415
    • /
    • 2006
  • Based on a non-linear model taking into account flexural-torsional couplings, analytical solutions are derived for lateral buckling of simply supported I beams under some representative load cases. A closed form is established for lateral buckling moments. It accounts for bending distribution, load height application and pre-buckling deflections. Coefficients $C_1$ and $C_2$ affected to these parameters are then derived. Regard to well known linear stability solutions, these coefficients are not constant but depend on another coefficient $k_1$ that represents the pre-buckling deflection effects. In numerical simulations, shell elements are used in mesh process. The buckling loads are achieved from solutions of eigenvalue problem and by bifurcations observed on non linear equilibrium paths. It is proved that both the buckling loads derived from linear stability and eigenvalue problem lead to poor results, especially for I sections with large flanges for which the behaviour is predominated by pre-buckling deflection and the coefficient $k_1$ is large. The proposed solutions are in good agreement with numerical bifurcations observed on non linear equilibrium paths.

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE NONCOOPERATIVE ELLIPTIC SYSTEM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.259-267
    • /
    • 2015
  • This paper is devoted to investigate the existence of the solutions for a class of the noncooperative elliptic system involving critical Sobolev exponents. We show the existence of the negative solution for the problem. We show the existence of the unique negative solution for the system of the linear part of the problem under some conditions, which is also the negative solution of the nonlinear problem. We also consider the eigenvalue problem of the matrix.

THE COMPUTATION OF POSITIVE SOLUTIONS FOR A BOUNDARY VALUE PROBLEM OF THE LINEAR BEAM EQUATION

  • Ji, Jun;Yang, Bo
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.215-224
    • /
    • 2017
  • In this paper, we propose a method of order two for the computation of positive solutions to a boundary value problem of the linear beam equation. The method is based on the Power method for the eigenvector associated with the dominant eigenvalue and the Crout-like factorization algorithm for the banded system of linear equations. It is extremely fast due to the linear complexity of the linear system solver. Numerical result of a test problem is included.

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems

  • Yee, Ben C.;Kochunas, Brendan;Larsen, Edward W.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1125-1134
    • /
    • 2017
  • In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.

Design of suboptimal robust kalman filter using LMI approach (LMI기법을 이용한 준최적 강인 칼만 필터의 설계)

  • 진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1477-1480
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal robust Kalman filter using LMI approach for system models in the state space, which are subjected to parameter uncertainties in both the state and measurement atrices. Under the assumption that augmented system composed of the uncertain system and the state estimation error dynamics should be stable, a Lyapunov inequality is obtained. And from this inequaltiy, the filter design problem can be transformed to the gneric LMI problems i.e., linear objective minimization problem and generalized eigenvalue minimization problem. When applied to uncertain linear system modles, the proposed filter can provide the minimum upper bound of the estimation error variance for all admissible parameter uncertainties.

  • PDF

Fuzzy finite element method for solving uncertain heat conduction problems

  • Chakraverty, S.;Nayak, S.
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.345-360
    • /
    • 2012
  • In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.

Eigenvalue analysis of structures with flexible random connections

  • Matheu, E.E.;Suarez, L.E.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.277-301
    • /
    • 1996
  • A finite element model of a beam element with flexible connections is used to investigate the effect of the randomness in the stiffness values on the modal properties of the structural system. The linear behavior of the connections is described by a set of random fixity factors. The element mass and stiffness matrices are function of these random parameters. The associated eigenvalue problem leads to eigenvalues and eigenvectors which are also random variables. A second order perturbation technique is used for the solution of this random eigenproblem. Closed form expressions for the 1st and 2nd order derivatives of the element matrices with respect to the fixity factors are presented. The mean and the variance of the eigenvalues and vibration modes are obtained in terms of these derivatives. Two numerical examples are presented and the results are validated with those obtained by a Monte-Carlo simulation. It is found that an almost linear statistical relation exists between the eigenproperties and the stiffness of the connections.

Out-of-plane elastic buckling of truss beams

  • Fedoroff, Alexis;Kouhia, Reijo
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.613-629
    • /
    • 2013
  • In this article we will present a method to directly evaluate the critical point of a non-linear system by using the solution of a polynomial eigenvalue approximation as a starting point for an iterative non-linear system solver. This method will be used to evaluate out-of-plane buckling properties of truss structures for which the lateral displacement of the upper chord has been prevented. The aim is to assess for a number of example structures whether or not the linearized eigenvalue solution gives a relevant starting point for an iterative non-linear system solver in order to find the minimum positive critical load.

Determinant Eigenvalue and Inverse Matrix of a Tridiagonal Matrix (삼대각선행열의 행열식 고유값 및 역행열)

  • Lee, Doo-Soo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.4
    • /
    • pp.455-459
    • /
    • 1986
  • A large set of linear equations which arise in many applications, such as in digital signal processing, image filtering, estimation theory, numerical analysis, etc. involve the problem of a tridiagonal matrix. In this paper, the determinant, eigenvalue and inverse matrix of a tridiagoanl matrix are analytically evaluated.

  • PDF