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THE COMPUTATION OF POSITIVE SOLUTIONS FOR

A BOUNDARY VALUE PROBLEM OF

THE LINEAR BEAM EQUATION

Jun Ji and Bo Yang

Abstract. In this paper, we propose a method of order two for the
computation of positive solutions to a boundary value problem of the
linear beam equation. The method is based on the Power method for the
eigenvector associated with the dominant eigenvalue and the Crout-like
factorization algorithm for the banded system of linear equations. It is
extremely fast due to the linear complexity of the linear system solver.
Numerical result of a test problem is included.

1. Introduction

The boundary value problem

(1.1) u(4)(t) = g(t)f(u(t)), 0 ≤ t ≤ 1,

(1.2) u(0) = u′′(0) = u′(1) = u′′′(1) = 0,

arises in the study of elasticity. The equation (1.1) is often referred to as the
beam equation. The BVP (1.1)-(1.2) describes the deflection of a beam under a
certain force when the beam is simply supported at the end t = 0 and fastened
with a sliding clamp at t = 1 [6]. This problem (and its generalizations) has
been widely investigated by many researchers [3, 4, 5, 10, 13]. In particular,
Graef and Yang [5] obtained sufficient conditions for existence and nonexis-
tence of positive solutions to the problem. We note that there are no efficient
algorithms in the literature for the positive solutions of this problem when such
positive solutions do exist. We will devote this paper to designing an efficient
algorithm for positive solutions of the BVP (1.1)-(1.2) when f is linear, i.e.,
f(u(t)) = λu(t). The novel techniques developed in [8] for positive solutions
of the boundary value problems of the second order difference equation will be
adopted to the new situation for such a task.
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For the case when f(u(t)) = λu(t), the problem (1.1)-(1.2) was discretized
in [7] as follows:

(1.3)

{

∆4yi = λai+2yi+2, −1 ≤ i ≤ n− 2,

y0 = ∆2y−1 = ∆yn = ∆3yn−1 = 0,

where λ is a parameter, and the forward difference operator ∆ is defined as
∆yi = yi+1 − yi. The monotone behavior of the eigenvalues of the discrete
beam problem (1.3) as {ai} changes was carried out in [7]. The linear beam
equation u(4)(t) + p(t)u(t) = λg(t)u(t) when the beam is fastened with sliding
clamps at both ends, i.e., u′(0) = u′′′(0) = u′(1) = u′′′(1) = 0 was discretized
as

{

∆4yi + bi+2yi+2 = λai+2yi+2, −1 ≤ i ≤ n− 2,

∆y0 = ∆3y−1 = ∆yn = ∆3yn−1 = 0,

and the monotone behavior of the eigenvalues of this discrete model when bi ≥ 0
for 1 ≤ i ≤ n with

∑n
i=1 bi > 0 can be found in [9].

A simple calculation indicates that the error involved in the approximation
of the discrete model (1.3) to the problem (1.1)-(1.2) is of order one, i.e., O(h).
Thus, the discrete model (1.3) is not a good choice for any numerical meth-
ods for positive solutions of the boundary value problems of the linear beam
equation. In this paper we will introduce a variant of the discrete model (1.3)
with a better approximation to the boundary conditions (1.2). The improved
discrete model is of order two and based on this model, a numerical method for
the computation of positive solutions of the boundary value problems of the
linear beam equation will be introduced. The core idea of the method is the
Power method for the eigenvector associated with the dominant eigenvalue and
the Crout-like factorization algorithm for a five-banded system of linear equa-
tions involved. The method is extremely fast due to the linear computational
complexity of the linear system solver. Numerical result of a test problem is
included.

2. The method

The interval of interest, [0, 1], is divided into n subintervals by specifying
evenly spaced values of the independent variable, t0, t1, t2, . . . , tn, with t0 = 0
and tn = 1. Each subinterval is of length h = 1/n and ti = ih = i/n. A simple
calculation leads to the following:

∆4yi/h
4 = y(4)(ti+2) +O(h2),(2.4)

∆2y−1/h
2 = y′′(0) +O(h2),(2.5)

yn+1 − yn−1

2h
= y′(1) +O(h2),(2.6)

yn+2 − 2yn+1 + 2yn−1 − yn−2

2h3
= y′′′(1) +O(h2).(2.7)
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Ignoring error terms O(h2) in (2.6) and (2.7), we can use

(2.8) yn+1 − yn−1 = 0 and yn+2 − 2yn+1 + 2yn−1 − yn−2 = 0

to approximate y′(1) = 0 and y′′′(1) = 0, respectively. The boundary condi-
tions of (2.8) are equivalent to

yn+1 − yn−1 = yn+2 − yn−2 = 0.

Define ai = h4g(ti) for i = 1, 2, . . . , n. It is easily seen that the problem
(1.1)-(1.2) with f(u(t)) = λu(t) can be approximated by

(2.9)

{

∆4yi = λai+2yi+2, −1 ≤ i ≤ n− 2,

y0 = ∆2y−1 = yn+1 − yn−1 = yn+2 − yn−2 = 0

with an error of O(h2). Due to the fact that the boundary conditions in (2.9)
can be written as

(2.10) y0 = 0, y−1 = −y1, yn+1 = yn−1, and yn+2 = yn−2,

the problem (2.9) is equivalent to the linear system

(2.11) (−D̂ + λÂ)y = 0,

where Â = diag(a1, a2, . . . , an−1, an/2) and D̂ is a banded n× n matrix given
by

(2.12) D̂ =

























5 −4 1 0 0 · · · 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0
0 1 −4 6 −4 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 1 −4 6 −4 1
0 0 0 0 · · · 0 1 −4 7 −4
0 0 0 0 · · · 0 0 1 −4 3

























.

Obviously, there is a one-to-one correspondence between the solution (y1, y2,
. . . , yn−1, yn)

T to the problem (2.11) and the solution (y−1, y0, y1, . . . , yn, yn+1,
yn+2)

T to the problem (2.9) under the relationship (2.10). We will not distin-
guish them.

The matrix D̂ shares the same structure as the matrix D of [7]:

(2.13) D =

























5 −4 1 0 0 · · · 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0
0 1 −4 6 −4 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · 1 −4 6 −4 1
0 0 0 0 · · · 0 1 −4 6 −3
0 0 0 0 · · · 0 0 1 −3 2

























.

Notice that the only difference between D̂ and D is the elements at positions
(n− 1, n− 1), (n− 1, n), (n, n− 1) and (n, n).
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Let ei be the i-th column of the identity matrix I of order n. Define the
elementary matrix Pi = I + ei−1e

T
i for i ≥ 2. It is easily seen that APi =

A+ (Aei−1)e
T
i is the matrix obtained by adding the (i − 1)th column of A to

the ith column of A and that PiA = A+ ei−1(e
T
i A) is the matrix obtained by

adding the ith row of A to the (i − 1)th row of A. Similarly, APT
i and PT

i A
are matrices obtained by adding the ith column of A to the (i − 1)th column
of A and by adding the (i − 1)th row of A to the ith row of A, respectively.

Lemma 2.1. The matrix D̂ is positive definite and each element of D̂−1 is

positive.

Proof. It is seen from (2.7)-(2.8) of [7] in the proof of [7, Lemma 2.1] that
D = WTW , where

(2.14) W = P−1
n P−1

n−1 · · ·P
−1
3 P−1

2 P−T
2 P−T

3 · · ·P−T
n−1P

−T
n .

Define V = D̂−D whose first (n− 2) rows are zeros and the last two rows are

eTn−1V = (0, . . . , 0, 1,−1) and eTnV = (0, . . . , 0, −1, 1).

We can write

(2.15) D̂ = D + V = WTW + V = WT (I +W−TVW−1)W.

Note that

(2.16) W−1 = W−T = PT
n PT

n−1 · · ·P
T
3 PT

2 P2P3 · · ·Pn−1Pn.

Performing a sequence of elementary column and row operations specified by
(2.16) on both sides of V , we have

(2.17) I +W−TVW−1 = I + ene
T
n

which, together with (2.15), implies that D̂ is positive definite. It is seen from
(2.15) and (2.17) that

(2.18) D̂−1 = W−1(I + ene
T
n )

−1W−T = W−1diag(1, 1, . . . , 1, 0.5)W−T .

Obviously, for each i ≥ 2 we have

Piej =







e1 if j = 1
ei−1 + ei if j = i
ej if j 6= i,

from which, together with (2.16) and (2.18), we have eTi D̂
−1ej > 0 for all

i, j = 1, 2, . . . , n. The proof is complete. �

Throughout the remainder of the paper, we assume that

(H) n ≥ 3 is a fixed integer and all elements of {ai}
n
i=1 are non-negative

with
∑n

i=1 ai > 0.

Based on Lemma 2.1 and the Perron-Frobenius theorem [12], we can easily
establish the following result with the same techniques employed in [7]. The
details are omitted here.
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Theorem 2.2. Assume the hypotheses of (H) hold. If λ1 is the smallest eigen-

value of the problem (2.11), then

(i) λ1 is simple and positive;
(ii) There exists a positive eigenvector y corresponding to λ1;

(iii) α1 = 1/λ1 is the simple, positive, and dominant eigenvalue of D̂−1Â.

In addition, there is a positive eigenvector y of D̂−1Â associated with

α1.

Let λ1 be the smallest eigenvalue of the problem (2.11) and y be an eigenvec-

tor associated with λ1. It is seen from Lemma 2.1 that D̂ is positive definite.
Together with the fact that λ1 > 0 in view of Theorem 2.2, we can write

(2.19) D̂−1Ây =
1

λ1
y.

That is, y is a positive eigenvector of D̂−1Â corresponding to the eigenvalue
1/λ1. Due to the fact that 1/λ1 is simple and dominant in view of Theo-
rem 2.2, the positive solution can be found by using Power method with any
initial vector y(0) if its representation in terms of the eigenvectors of the matrix
D̂−1Â contains a nonzero contribution from the eigenvector associated with the
dominant eigenvalue. Obviously, y(0) = e, an n-dimensional vector of all ones,
guarantees non-orthogonality with any positive vector. Therefore, the Power
method with the initial vector e:

(2.20) y(0) = e, z(k) = D̂−1Ây(k−1), λ(k) = ||z(k)||∞, y(k) = z(k)/λ(k)

is certainly convergent to a positive solution of the problem. Note that z(k) =
D̂−1Ây(k−1) is equivalent to

(2.21) D̂z(k) = Ây(k−1).

The effectiveness of Crout Factorization Algorithm for tridiagonal linear sys-
tems (for example, see [2]) prompts us to explore the structure of the banded

system of linear equations (2.21). Let us consider the LU decomposition of D̂
where L is a lower triangular matrix and U is an upper triangular matrix with
1’s along the diagonal. We note that D̂ admits a unique LU factorization since
all its leading principal minors are positive.

Performing the LU decomposition on D̂, we find that all elements in L are
zeros except for those in {(i, i) : i = 1, . . . , n}, {(i, i − 1), i = 2, . . . , n}, and
{(i, i − 2), i = 3, . . . , n}; while all elements in U are zeros except for those
in {(i, i) : i = 1, 2, . . . , n}, {(i, i + 1), i = 1, 2, . . . , n − 1}, and {(i, i + 2), i =
1, 2, . . . , n − 2}. That is, L and U can be found in the form of the following
format:
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L =





















l11 0 0 · · · 0 0 0
l21 l22 0 · · · 0 0 0
l31 l32 l33 · · · 0 0 0
0 l42 l43 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · ln−1,n−2 ln−1,n−1 0
0 0 0 · · · ln,n−2 ln,n−1 lnn





















,

and

U =





















1 u12 u13 0 · · · 0 0
0 1 u23 u24 · · · 0 0
0 0 1 u34 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · un−2,n−1 un−2,n

0 0 0 0 · · · 1 un−1,n

0 0 0 0 · · · 0 1





















.

We will focus on a procedure similar to the Crout factorization method for
tridiagonal linear system, avoiding the computation of zeros in L and U . To

get the nonzero entries of L and U , we explore (d̂ij) = D̂ = LU , resulting in
the following relationships:

d̂11 = l11, d̂21 = l21, d̂31 = l31, d̂12 = l11u12, d̂13 = l11u13,(2.22)

d̂22 = l21u12 + l22, d̂32 = l31u12 + l32, d̂42 = l42,(2.23)

d̂23 = l21u13 + l22u23, d̂24 = l22u24,(2.24)

d̂i,i = li,i−2ui−2,i + li,i−1ui−1,i + lii for 3 ≤ i ≤ n,(2.25)

d̂i+1,i = li+1,i−1ui−1,i + li+1,i for 3 ≤ i ≤ n− 1,(2.26)

d̂i+2,i = li+2,i for 3 ≤ i ≤ n− 2,(2.27)

d̂i,i+1 = li,i−1ui−1,i+1 + liiui,i+1 for 3 ≤ i ≤ n− 1,(2.28)

d̂i,i+2 = liiui,i+2 for 3 ≤ i ≤ n− 2.(2.29)

For the coefficient matrix D̂ specified in (2.12), in view of (2.22), (2.23), and

(2.27), we have li+2,i = d̂i+2,i = 1 for i = 1, 2, . . . , n − 2. The other non-zero
elements in L and U can be obtained alternatively, first entry lii, li+1,i in L
and then entries ui,i+1, ui,i+2 in U for each i. It is easily seen from (2.22) that

(2.30) l11 = d̂11 = 5, l21 = −4, u12 = d̂12/l11 = −0.8, u13 = d̂13/l11 = 0.2 .

We will use the fact that li+2,i = 1 for 1 ≤ i ≤ (n−2) in (2.23)-(2.26) to further

reduce the computational complexity of LU decomposition of D̂.

Procedure 1: Crout-like Factorization of D̂

Step 0 Input n.
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Step 1 Compute l11, l21, u12, and u13 by (2.30).
Step 2 Set l22 = 6 − l21u12, l32 = −4 − u12, u23 = (−4 − l21u13)/l22, and

u24 = 1/l22.
Step 3 For i = 3 : n− 2, compute

lii = 6− ui−2,i − li,i−1ui−1,i, li+1,i = −4− ui−1,i,

ui,i+1 = (−4− li,i−1ui−1,i+1)/lii, ui,i+2 = 1/lii.

Step 4 Compute

ln−1,n−1 = 7− un−3,n−1 − ln−1,n−2un−2,n−1, ln,n−1 = −4− un−2,n−1,

un−1,n = (−4− ln−1,n−2un−2,n)/ln−1,n−1.

Step 5 Compute lnn = 3− un−2,n − ln,n−1un−1,n.
Step 6 Return

l1 = (l11, l22, . . . , lnn)
T , l2 = (l21, l32, . . . , ln,n−1)

T ,

u1 = (u12, u23, . . . , ln−1,n)
T , u2 = (u13, u24, . . . , ln−2,n)

T .

After factorizing D̂ into specially structured L and U , we need to solve two
triangular systems of linear equations Lx = b and Uz = x to get the solution
of D̂z = b.

Procedure 2: Crout-like Factorization Algorithm for D̂z = b.

Step 0 Input b and four vectors l1, l2, u1, u2 obtained from Procedure 1.
Step 1 Set x1 = b1/l11 and x2 = (b2 − l21x1)/l22.
Step 2 For i = 3, 4, . . . , n, set xi = (bi − xi−2 − li,i−1xi−1)/lii.
Step 3 Set zn = xn and zn−1 = xn−1 − un−1,nzn.
Step 4 For i = n− 2, n− 3, . . . , 1, set zi = xi − ui,i+1zi+1 − ui,i+2zi+2.

Step 5 Return z, the solution to D̂z = b.

Procedure 1 is the LU factorization method but it avoids the computation of
the zero elements in L and U. Let us count the total number of multiplications
and divisions by ignoring the additions and subtractions. It is easy to see
that there are 4n − 8 multiplications or divisions in Procedure 1 and 4n − 4
multiplications or divisions in Procedure 2. Thus, both procedures have linear
computational complexities.

Combining the Power method in (2.20) with the Crout-like Procedures de-
scribed above, we have the following algorithm for a positive solution to the
problem (1.3).

Algorithm 1. The Power method for Problem (2.9)

Step 0 Input n, Â = diag(a1, a2, . . . , an/2). Set ǫ = 10−8 and y = e, a vector
of all ones.

Step 1 Call Procedure 1.
Step 2 Repeat

Step 2.1 Form b = Ây and solve D̂z = b with Procedure 2.
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Step 2.2 Set β = ||z||∞ and y+ = z/β.
Step 2.3 If ||y+ − y||2 < ǫ, then stop and goto Step 3

else set y = y+ and goto Step 2.1.
Step 3 Return the eigenvalue λ = 1/β and a positive solution y+.

Algorithm 1 is based on the Power method for the eigenvector associated
with the dominant eigenvalue and the Crout-like factorization algorithm for
the sparse system of linear equations involved. It requires one structured LU
decomposition in Step 1 with a cost of 4n − 8 multiplications or divisions.
Once the non-zero elements of L and U are obtained, they can be repeatedly
used in the major loop of the algorithm, i.e., the Step 2. We note that n
multiplications are needed in forming b and 4n− 4 multiplications or divisions
in a call to Procedure 2 at each iteration of the loop. Though there may be
a few iterations in Step 2, Algorithm 1 is very fast due to the fact that each
repetition of Step 2 only requires O(n) multiplications and divisions. Moreover,
this algorithm is extremely suitable for large scale problems since only a few
vector variables are needed in its implementation.

The algorithm was implemented in Matlab 6.1 and executed in Lenovo X201
Tablet PC which is equipped with Intel Core i7 CPU at 2.00 GHz, with dual-
core, 4 logical processors, and 4 GB physical memory (RAM). A few problems
were tested and all were solved successfully. The speed of convergence depends
on the dimension n and the other data of the problems.

Consider the boundary value problem of the linear beam equation:

(2.31)

{

u′′′′ = 12λ
(5−t2)2 u(t), t ∈ [0, 1]

u(0) = u′′(0) = u′(1) = u′′′(1) = 0.

It is easy to check that one eigenvalue of the problem is λt = 10 and a corre-
sponding positive eigenfunction is

(2.32) u(t) = t(t2 − 5)2, 0 ≤ t ≤ 1.

For this example, ai = 12h4/(5 − t2i )
2 = 12/(5n2 − i2)2. Let λ̂ and ŷ be

the eigen-pair obtained by applying Algorithm 1 to this test problem and u =
(u(t1), u(t2), . . . , u(tn))

T be the vector of true solution obtained by evaluating
u(t) of (2.32) at nodes. Since the infinity norm of the computed solution ŷ is
1, we also need to scale the vector u accordingly. Let yt = u/||u||∞ and define

error1 = max
{∣

∣(ŷi − yti)/y
t
i

∣

∣ : i = 1, 2 . . . , n
}

,

error2 = |(λ̂− λt)/λt|.

We note that error1 represents the maximum relative error of all components
of the computed positive solution and error2 represents the relative error of the
computed eigenvalue. Algorithm 1 is called for a positive solution of the test
problem (2.31) through the discrete model (2.9). In the following table, we will
report error1 and error2 along with the number of calls to Procedure 2 and the
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time in seconds of each run for each choice of h.

h (or 1/n) 10−1 10−2 10−3 5× 10−4 2.5× 10−4

error1 2.57× 10−4 2.53 × 10−6 3.99 × 10−8 5.07 × 10−7 1.17× 10−6

error2 0.0062 6.18 × 10−5 1.29 × 10−6 6.32 × 10−6 3.38× 10−4

time 0.002030 0.026830 0.063650 0.12940 0.277370

# of calls 6 6 6 6 6

The method proposed solves the problem successfully and very quickly for
each choice of n. With h = 0.001, an approximate positive solution is found
within a relative error less than 4×10−8 and corresponding eigenvalue is found
within a relative error of 1.3 × 10−6. We observed that the rounding errors
are not significant for a moderate stepsize h. However, for a very small h, say
2.5 × 10−4, the rounding errors begin to ruin the solution. Since the discrete
model proposed in this section is obtained by ignoring the terms involving
O(h2), the method has an error of O(h2) theoretically. In the following two
tables, the rows labeled Ratio give the factors by which the errors decreased
when n was doubled (or h was halved). Empirically, the factors approach 4.0
as h approaches 0, and that is what we observe in the tables below.

n (or 1/h) 8 16 32 64 128 256

error1 4.04× 10−4 9.94× 10−5 2.47× 10−5 6.18× 10−6 1.54× 10−6 3.86× 10−7

Ratio 4.06 4.02 4.00 4.01 3.99

n (or 1/h) 8 16 32 64 128 256

error2 0.0096 0.0024 6.03× 10−4 1.51× 10−4 3.77× 10−5 9.42× 10−6

Ratio 4 3.98 3.99 4.01 4.00

Finally, we comment that the method proposed in this paper starts from the
vector of all ones as an initial estimate of the positive solution. The method was
tested with a randomly generated vector of components in [0, 1] as a starting
point. We observed that it is insensitive to the choice of the starting point.

Acknowledgment. The research of Jun Ji was partly supported by the Ken-
nesaw State University Tenured Faculty Professional Development Full Paid
Leave Program in Fall 2015.
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