Browse > Article
http://dx.doi.org/10.1016/j.net.2017.07.014

A multilevel in space and energy solver for multigroup diffusion eigenvalue problems  

Yee, Ben C. (Department of Nuclear Engineering and Radiological Sciences, University of Michigan)
Kochunas, Brendan (Department of Nuclear Engineering and Radiological Sciences, University of Michigan)
Larsen, Edward W. (Department of Nuclear Engineering and Radiological Sciences, University of Michigan)
Publication Information
Nuclear Engineering and Technology / v.49, no.6, 2017 , pp. 1125-1134 More about this Journal
Abstract
In this paper, we present a new multilevel in space and energy diffusion (MSED) method for solving multigroup diffusion eigenvalue problems. The MSED method can be described as a PI scheme with three additional features: (1) a grey (one-group) diffusion equation used to efficiently converge the fission source and eigenvalue, (2) a space-dependent Wielandt shift technique used to reduce the number of PIs required, and (3) a multigrid-in-space linear solver for the linear solves required by each PI step. In MSED, the convergence of the solution of the multigroup diffusion eigenvalue problem is accelerated by performing work on lower-order equations with only one group and/or coarser spatial grids. Results from several Fourier analyses and a one-dimensional test code are provided to verify the efficiency of the MSED method and to justify the incorporation of the grey diffusion equation and the multigrid linear solver. These results highlight the potential efficiency of the MSED method as a solver for multidimensional multigroup diffusion eigenvalue problems, and they serve as a proof of principle for future work. Our ultimate goal is to implement the MSED method as an efficient solver for the two-dimensional/three-dimensional coarse mesh finite difference diffusion system in the Michigan parallel characteristics transport code. The work in this paper represents a necessary step towards that goal.
Keywords
Multigroup diffusion; Multilevel; Eigenvalue;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K.S. Smith, J.D. Rhodes III, Full-core, 2-D, LWR core calculations with CASMO-4E, in: PHYSOR 2002, October 7-10, Seoul, 2002.
2 Mpact Team, MPACT Theory Manual Version 2.0.0," Tech. Rep. CASL-U-2015-0078-000, Consortium for Advanced Simulation of LWRs, 2015.
3 W.L. Briggs, V.E. Henson, S.F. Mccormick, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2000.
4 B.T. Adams, J.E. Morel, A two-grid acceleration scheme for the multigroup $$S_N$$ equations with neutron upscattering, Nucl. Sci. Eng. 115 (1993) 253-264.   DOI
5 B.C. Yee, B. Kochunas, E.W. Larsen, Y. Xu, Space-dependent Wielandt shift methods for multigroup diffusion eigenvalue problems, Nucl. Sci. Eng. (2017), http://dx.doi.org/10.1080/00295639.2017.1350001.   DOI
6 H. Finnemann, R. Boeer, R. Mueller, Y.I. Kim, Adaptive multi-level techniques for the solution of nodal transport equations, in: Proceedings of the Third European Conference on Multigrid Methods, Bonn, Germany, 2006.
7 R. Van Geemert, Synergies of acceleration methodologies for whole-core N/ TH-coupled steady-state and transient computations, in: Proceedings on the International Conference on the Physics of Reactors (PHYSOR 2006), 2006.
8 R. Van Geemert, A multi-level surface rebalancing approach for efficient convergence acceleration of 3D full core multi-group fine grid nodal diffusion iterations, Ann. Nucl. Energy 63 (2014) 22-37.   DOI
9 Z. Zhong, T.J. Downar, Y. Xu, M.D. Dehart, K.T. Clarno, Implementation of two-level coarse-mesh finite difference acceleration in an arbitrary geometry, two-dimensional discrete ordinates transport method, Nucl. Sci. Eng. 158 (3) (2008) 289-298.   DOI
10 S. Schunert, Y. Wang, F. Gleicher, J. Ortensi, B. Baker, V. Laboure, C. Wang, M. Dehart, R. Martineau, A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements, J. Comput. Phys. 338 (2017) 107-136.   DOI
11 L.R. Cornejo, D.Y. Anistratov, Nonlinear diffusion acceleration method with multigrid in energy for k-eigenvalue neutron transport problems, Nucl. Sci. Eng. 184 (2016) 4.
12 D.Y. Anistratov, L.R. Cornejo, J.P. Jones, Stability analysis of nonlinear two-grid method for multigroup neutron diffusion problems, Journal of Computational Physics 346 (1 October 2017) 278-294.   DOI
13 S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. Mcinnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc Users Manual," Tech. Rep. ANL-95/11-Revision 3.7, Argonne National Laboratory, 2016.
14 G. Pomraning, Grey radiative transfer, J. Quant. Spectrosc. Ra. 11 (6) (1971) 597-615.   DOI
15 H. Park, D. Knoll, R. Rauenzahn, A. Wollaber, J. Densmore, A consistent, moment-based, multiscale solution approach for thermal radiative transfer problems, Transport. Theor. Stat. 41 (3-4) (2012) 284-303.   DOI
16 J.I. Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (7) (2008) 668-682.   DOI
17 R.E. Alcouffe, The multigrid method for solving the two-dimensional multigroup diffusion equation, in: Advances in Reactor Computations, Proceedings of a Topical Meeting, March 28-31, Salt Lake City, 1983.
18 E.L. Wachspress, Iterative Solution of Elliptic Systems, Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1966.
19 T.J. DOWNAR, et al., PARCS: purdue advanced reactor core simulator, in: PHYSOR 2002, October 7-10, Seoul, 2002.
20 A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput. 31 (138) (1977) 333-390.   DOI
21 R. Alcouffe, A. Brandt, J. Dendy JR., J. Painter, The multi-grid method for the diffusion equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comp. 2 (4) (1981) 430-454.   DOI
22 E. Lewis, M. Smith, N. Tsoulfanidis, G. Palmiotti, T. Taiwo, R. Blomquist, Benchmark specification for Deterministic 2-D/3-D MOX fuel assembly transport calculations without spatial homogenization (C5G7 MOX), NEA/NSC, 2001.
23 A.T. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, Tech. Rep. CASL-U-2012-0131-004, Oak Ridge National Laboratory, 2014.
24 K.S. Kim, M.L. Williams, D. Wiarda, A. Godfrey, Development of a New 47-group Library for the CASL Neutronics Simulators, 2015.
25 R.B. Morgan, Davidson's method and preconditioning for generalized eigenvalue problems, J. Comput. Phys. 89 (1) (1990) 241-245.   DOI