Browse > Article
http://dx.doi.org/10.12989/csm.2012.1.4.345

Fuzzy finite element method for solving uncertain heat conduction problems  

Chakraverty, S. (Department of Mathematics, National Institute of Technology)
Nayak, S. (Department of Mathematics, National Institute of Technology)
Publication Information
Coupled systems mechanics / v.1, no.4, 2012 , pp. 345-360 More about this Journal
Abstract
In this article we have presented a unique representation for interval arithmetic. The traditional interval arithmetic is transformed into crisp by symbolic parameterization. Then the proposed interval arithmetic is extended for fuzzy numbers and this fuzzy arithmetic is used as a tool for uncertain finite element method. In general, the fuzzy finite element converts the governing differential equations into fuzzy algebraic equations. Fuzzy algebraic equations either give a fuzzy eigenvalue problem or a fuzzy system of linear equations. The proposed methods have been used to solve a test problem namely heat conduction problem along with fuzzy finite element method to see the efficacy and powerfulness of the methodology. As such a coupled set of fuzzy linear equations are obtained. These coupled fuzzy linear equations have been solved by two techniques such as by fuzzy iteration method and fuzzy eigenvalue method. Obtained results are compared and it has seen that the proposed methods are reliable and may be applicable to other heat conduction problems too.
Keywords
finite element method; uncertainty; interval arithmetic; fuzzy number; fuzzy finite element method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Neumaier, A. (1990), Interval methods for systems of equations, Cambridge University Press, New York.
2 Nicolai, B.M. and De Baerdemaeker, J. (1993), "Computation of heat conduction in materials with random variable thermo physical properties", Int. J. Numer. Meth. Eng., 36(3), 523-536.   DOI
3 Nicolai, B.M., Scheerlinck, N., Verboven, P. and De Baerdemaeker, J. (2000), "Stochastic perturbation analysis of thermal food processes with random eld parameters", Trans. ASAE, 43,131-138.   DOI
4 Nicolai, B.M., Verboven, P., Scheerlinck, N. and De Baerdemaeker, J. (1999), "Numerical analysis of the propagation of random parameter uctuations in time and space during thermal food processes", J. Food Eng., 38(3), 259-278.
5 Nicolai, B.M., Verlinden, B., Beuselinck, A., Jancsok, P., Quenon, V., Scheerlinck, N.,Verboven, P. and De Baerdemaeker, J. (1999), "Propagation of stochastic temperature uctuations in refrigerated fruits", Int. J. Refrig., 22(2), 81-90.   DOI   ScienceOn
6 Panahi, A., Allahviranloo, T. and Rouhparvar, H. (2008), "Solving fuzzy linear systems of equations", ROMAI J., 4(1), 207-214.
7 Peterson, R.B. (1999), "Numerical modeling of conduction effects in microscale counterflow heat exchangers", Microscale Therm. Eng., 3(1),17-30.   DOI   ScienceOn
8 Senthilkumar, P. and Rajendran, G. (2011), "New approach to solve symmetric fully fuzzy linear systems", Sadhana, 36(6), 933-940.   DOI   ScienceOn
9 Varga, S., Oliveira, J. and Oliveira, F. (2000), "Influence of the variability of processing factors on the F-value distribution in batch retorts", J. Food Eng., 44(3), 155-161.   DOI   ScienceOn
10 Vijayalakshmi, V. and Sattanathan, R. (2011), "ST decomposition method for solving fully fuzzy linear systems using gauss jordan for trapezoidal fuzzy matrices", Forum Math., 6(45), 2245- 2254.
11 Wang, J., Wolfe, R.R. and Hayakawa, K. (1991), "Thermal process lethality variability in conduction heated foods", J. Food Sci., 56(5), 1424-1428.   DOI
12 Yang, H.Q., Yao, H. and Jones, J.D. (1993), "Calculating functions on fuzzy numbers", Fuzzy Set. Syst., 55(3), 273-283.   DOI   ScienceOn
13 Zadeh, L.A. (1965), "Fuzzy Sets, information and control", 8, 338-353.   DOI
14 Dong, W. and Shah, H. (1987), "Vertex method for computing functions of fuzzy variables", Fuzzy Set. Syst., 24(1), 65-78.   DOI   ScienceOn
15 Nicolai, B.M., Egea, J.A., Scheerlinck, N., Banga, J.R. and Datta, A.K. (2011), "Fuzzy finite element analysis of heat conduction problems with uncertain parameters", J. Food Eng., 103(1),38-46.   DOI   ScienceOn
16 Bondarev, V.A. (1997), "Variational method for solving non-linear problems of unsteady-state heat conduction", Int. J. Heat Mass Tran., 40(14), 3487-3495.   DOI   ScienceOn
17 Carlslaw, H.S. and Jaeger, J.C. (1986), Conduction of Heat in Solids, 2nd Ed., Oxford University Press, USA.
18 Caro-Corrales, J., Cronin, K., Abodayeh, K., Gutierrez-Lopez, G. and Ordorica-Falomir, C. (2002), "Analysis of random variability in biscuit cooling", J. Food Eng., 54(2), 147-156.   DOI   ScienceOn
19 Demir, A.D., Baucour, P., Cronin, K. and Abodayeh, K. (2003), "Analysis of temperature variability during the thermal processing of hazelnuts", Innov. Food Sci. Emerg. Technol., 4(1), 69-84.   DOI   ScienceOn
20 Deng, Z.S. and Liu, J. (2002), "Monte Carlo method to solve multidimensional bioheat transfer problem", Numer. Heat Tr. B. Fund., 42(6), 543-567.   DOI   ScienceOn
21 Dong, W.M. and Wong F.S. (1987)," Fuzzy weighted average and implementation of the extension principle", Fuzzy Set Syst., 21(2), 183-199.   DOI   ScienceOn
22 Wilson, E.L. and Nickell, R.E. (1966), "Application of the finite element method to heat fonduction analysis", Nuclear Eng. Design, 4, 276-286, North-Holland Publishing Comp., Amsterdam.   DOI   ScienceOn
23 Onate, E., Zarate, F. and Idelsohn, S.R. (2006), "Finite element formulation for convective-diffusive problems with sharp gradients using finite calculus", Comput. Method. Appl. M., 195(13-16), 1793-1825.   DOI   ScienceOn
24 Halder, A., Datta, A.K. and Geedipalli, S.S.R. (2007), "Uncertainty in thermal process calculations due to variability in firstorder and Weibull parameters", J. Food Sci., 72(4), 155-167.   DOI
25 Hanss, M. (2002), "The transformation method for the simulation and analysis of systems with uncertain parameters", Fuzzy Set. Syst., 130(3), 277-289.   DOI   ScienceOn
26 Laguerre, O. and Flick, D. (2010), "Temperature prediction in domestic refrigerators: deterministic and stochastic approaches", Int. J. Refrig., 33(1), 41-51.   DOI   ScienceOn
27 Iijima, K. (2004), "Numerical solution of backward heat conduction problems by a high order lattice-free finite difference method", J. Chinese Inst. Eng., 27(4), 611-620.   DOI
28 Klir, G.J. (1997), "Fuzzy arithmetic with requisite constraints", Fuzzy Set. Syst., 91(2),165-175.   DOI   ScienceOn
29 Kulpa, Z., Pownuk, A. and Skalna, I. (1998), "Analysis of linear mechanical structures with uncertainties by means of interval methods", Comput. Mech. Eng. Sci., 5, 443-477.
30 Ling X., Keanini R.G. and Cherukuri, H.P. (2003), "A non-iterative finite element method for inverse heat conduction problems", Int. J. Numer. Meth.Eng., 56(9),1315-1334.   DOI   ScienceOn
31 Liu, J.Y., Minkowycz, W.J. and Cheng, P. (1986), "Conjugated, mixed convection-conduction heat transfer along a cylindrical fin in a porous medium", Int. J. Heat Mass Tran., 29(5),769-775.   DOI   ScienceOn
32 Liu, K.C. and Cheng, P.J. (2006), "Numerical analysis for dual-phase-lag heat conduction in layered films", Numer. Heat Tr. A. Appl., 49(6), 589-606.   DOI   ScienceOn
33 Igboekwe, M.U. and Achi, N.J. (2011), "Finite difference method of modelling groundwater flow", J. Water Res. Protection, 3, 192-198.   DOI
34 Matinfar, M., Nasseri, S.H. and Sohrabi, M. (2008), "Solving fuzzy linear system of equations by using householder decomposition method ", Appl. Math. Sci., 2(52), 2569 -2575.
35 Monte, F. de (2000), "Transient heat conduction in one-dimensional composite slab. A 'natural' analytic approach", Int. J. Heat Mass Tran., 43(19), 3607-3619.   DOI   ScienceOn
36 Muhanna, R.L. and Mullen, R.L. (2001), "Uncertainty in mechanics problems - interval - based approach", J. Eng. Mech. - ASCE, 127(6), 557-556.   DOI   ScienceOn
37 Muhieddine, M., Canot, E. and March, R. (2009), "Various approaches for solving problems in heat conduction with phase change", IJFV Int. J. On Finite, 6(1).