• 제목/요약/키워드: linear algebra

검색결과 286건 처리시간 0.025초

ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong;Kim, Byung-Do
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권2호
    • /
    • pp.227-241
    • /
    • 2009
  • Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$ for all $x\;{\in}\;A$. Then we have D(A) $\subseteq$ rad(A).

  • PDF

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

CLASSIFICATION ON ARITHMETIC FUNCTIONS AND CORRESPONDING FREE-MOMENT L-FUNCTIONS

  • Cho, Ilwoo
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.717-734
    • /
    • 2015
  • In this paper, we provide a classification of arithmetic functions in terms of identically-free-distributedness, determined by a fixed prime. We show then such classifications are free from the choice of primes. In particular, we obtain that the algebra $A_p$ of equivalence classes under the quotient on A by the identically-free-distributedness is isomorphic to an algebra $\mathbb{C}^2$, having its multiplication $({\bullet});(t_1,t_2){\bullet}(s_1,s_2)=(t_1s_1,t_1s_2+t_2s_1)$.

Separating sets and systems of simultaneous equations in the predual of an operator algebra

  • Jung, Il-Bong;Lee, Mi-Young;Lee, Sang-Hun
    • 대한수학회지
    • /
    • 제32권2호
    • /
    • pp.311-319
    • /
    • 1995
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operaors on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the $weak^*$ topology on $L(H)$. Note that the ultraweak operator topology coincides with the $weak^*$ topology on $L(H)$ (see [5]).

  • PDF

VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA Cℓ0,n

  • Song, Youngkwon;Lee, Doohann
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.571-579
    • /
    • 2014
  • In this paper, we present new vector generators of a matrix subalgebra $L_{0,n}$, which is isomorphic to the Clifford algebra $C{\ell}_{0,n}$, and we obtain the matrix form of inverse of a vector in $L_{0,n}$. Moreover, we consider the solution of a linear equation $xg_2=g_2x$, where $g_2$ is a vector generator of $L_{0,n}$.

ORTHOGONALITY AND LINEAR MAPPINGS IN BANACH MODULES

  • YUN, SUNGSIK
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제22권4호
    • /
    • pp.343-357
    • /
    • 2015
  • Using the fixed point method, we prove the Hyers-Ulam stability of lin- ear mappings in Banach modules over a unital C*-algebra and in non-Archimedean Banach modules over a unital C*-algebra associated with the orthogonally Cauchy- Jensen additive functional equation.

A NOTE ON THE UNITS OF MANTACI-REUTENAUER ALGEBRA

  • Arslan, Hasan;Can, Himmet
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1037-1049
    • /
    • 2018
  • In this paper, we have first presented the construction of the linear characters of a finite Coxeter group $G_n$ of type $B_n$ by lifting all linear characters of the quotient group $G_n/[G_n,G_n]$ of the commutator subgroup $[G_n,G_n]$. Also we show that the sets of distinguished coset representatives $D_A$ and $D_{A^{\prime}}$ for any two signed compositions A, A' of n which are $G_n$-conjugate to each other and for each conjugate class ${\mathcal{C}}_{\lambda}$ of $G_n$, where ${\lambda}{\in}\mathcal{BP}(n)$, the equality ${\mid}{\mathcal{C}}_{\lambda}{\cap}D_A{\mid}={\mid}{\mathcal{C}}_{\lambda}{\cap}D_{A^{\prime}}{\mid}$ holds. Finally, we have given the general structure of units of Mantaci-Reutenauer algebra.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

ON 2-GENERATING INDEX OF FINITE DIMENSIONAL LEFT-SYMMETRIC ALGEBRAS

  • Yang, Xiaomei;Zhu, Fuhai
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1537-1556
    • /
    • 2017
  • In this paper, we introduce the notion of generating index ${\mathcal{I}}_1(A)$ (2-generating index ${\mathcal{I}}_2(A)$, resp.) of a left-symmetric algebra A, which is the maximum of the dimensions of the subalgebras generated by any element (any two elements, resp.). We give a classification of left-symmetric algebras with ${\mathcal{I}}_1(A)=1$ and ${\mathcal{I}}_2(A)=2$, 3 resp., and show that all such algebras can be constructed by linear and bilinear functions. Such algebras can be regarded as a generalization of those relating to the integrable (generalized) Burgers equation.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • 호남수학학술지
    • /
    • 제39권1호
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.