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A NOTE ON THE UNITS OF

MANTACI-REUTENAUER ALGEBRA
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Abstract. In this paper, we have first presented the construction of the

linear characters of a finite Coxeter group Gn of type Bn by lifting all
linear characters of the quotient group Gn/[Gn, Gn] of the commutator

subgroup [Gn, Gn]. Also we show that the sets of distinguished coset
representatives DA and DA′ for any two signed compositions A,A′ of n

which are Gn-conjugate to each other and for each conjugate class Cλ of

Gn, where λ ∈ BP(n), the equality |Cλ ∩ DA| = |Cλ ∩ DA′ | holds. Fi-
nally, we have given the general structure of units of Mantaci-Reutenauer

algebra.

1. Introduction

As a convention, throughout this paper, we denote byMR(Gn), SC(n) and
BP(n) the Mantaci-Reutenauer algebra, the set of all signed compositions of n
and the set of all double partitions of n, respectively.

We assume that Gn is a Coxeter group of type Bn. First of all, we will
strictly describe the structure of the commutator subgroup [Gn, Gn] of Gn by
using combinatorial properties of Gn. Then we will obtain all of the linear
characters of Gn by using lifts of the irreducible characters of the quotient
group Gn/[Gn, Gn].

Mantaci-Reutenauer algebra MR(Gn), that is a subalgebra of the group
algebra QGn and contained the classical Solomon’s descent algebra of type An
and Bn, was firstly constructed in [7]. In [3], Bonnafé and Hohlweg have recon-
structed this algebra by the methods which depend more on the structure of
Gn as a Coxeter group. It is well-known by [3, Proposition 2.9] that if wA = A′

for A,A′ ∈ SC(n) and w ∈ Gn, then DA and DA′ = DAw
−1 are in general not

Gn-conjugate as sets. In [5, Theorem 1.1], Fleischmann has proved that the sets
of distinguished coset representatives of any two conjugate standard parabolic
subgroups of a given Coxeter group are pointwise conjugate to each other and
also he has given an example not verifying the pointwise conjugate statement

Received June 2, 2017; Revised April 26, 2018; Accepted May 29, 2018.

2010 Mathematics Subject Classification. Primary 20F55.
Key words and phrases. Mantaci-Reutenauer algebra, orthogonal primitive idempotents,

pointwise-conjugate.

c©2018 Korean Mathematical Society

1037



1038 H. ARSLAN AND H. CAN

for non-standard parabolic subgroups of a Coxeter group. Although the col-
lection of the reflection subgroups of Gn corresponding to signed compositions
of n also contains all standard parabolic subgroups and some non-parabolic
subgroups of Gn, the sets of distinguished coset representatives of conjugate
reflection subgroups are pointwise conjugate to each other.

In Theorem 3.3, we will also give an effective formula to determine how the
structure of units of Mantaci-Reutenauer algebra MR(Gn). As a result of
this, for any signed composition A of n containing both positive and negative
components, the corresponding basis element yA is not invertible inMR(Gn).
Then we shall give an example to illustrate the method developed in Section 3.

2. The commutator subgroup of the Coxeter group Gn of type Bn

Let (Gn, Rn) denote a Coxeter system of type Bn and write its generating set
as Rn = {t, s1, . . . , sn−1}. The Coxeter group Gn acts by the permutation on
the set In = {−n, . . . ,−1, 1, . . . , n} such that for every i ∈ In, w(−i) = −w(i).
So we have,

Gn = {w ∈ Perm(In) : ∀i ∈ In, w(−i) = −w(i)}.
The Dynkin diagram of (Gn, Rn) is as follows:

Bn :
t◦ ⇐ s1◦ −s2◦ − · · · −

sn−1◦.
For I ⊂ Rn, if GI is generated by I, then GI is called a standard parabolic
subgroup of Gn. If H is a subgroup of Gn conjugate to GI for some I ⊂ Rn,
then we call H a parabolic subgroup of Gn. Let t0 := t and ti+1 := si+1tisi+1

for each i, 0 ≤ i ≤ n − 2. If we put Tn := {t0, t1, . . . , tn−1}, then the defining
relations between the elements of Rn and Tn are stated in such a way that:

(1) t2i = 1, s2j = 1 for all i, j, 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1;

(2) (s1t)
4 = 1;

(3) (sisi+1)3 = 1 for all i, 1 ≤ i ≤ n− 2;
(4) (sit)

2 = 1 for all i, 1 < i ≤ n− 1;
(5) (sisj)

2 = 1 for |i− j| ≥ 2;
(6) (titj)

2 = 1 for 0 ≤ i, j ≤ n− 1.

We sometimes represent w ∈ Gn as the word w(1)w(2) · · ·w(n). Denote by l :
Gn → N the length function attached to Rn and let lt : Gn → N be the function,
which assigns to each element w of Gn the number of t appearing in a reduced
expression of w. If we denote by Tn the reflection subgroup of Gn generated
by Tn, then Tn is a normal subgroup of Gn. Now let R−n = {s1, . . . , sn−1}.
The reflection subgroup of Gn generated by R−n is represented by G−n and
isomorphic to the symmetric group Ξn of degree n. Thus Gn = G−n n Tn.
Therefore, we have |Gn| = 2n · n!.

Let {e1, . . . , en} be the standard basis of the real inner product space Rn
over R. Let

Γ+
n = {ei : 1 ≤ i ≤ n} ∪ {ej + αei : α ∈ {−1, 1} and 1 ≤ i < j ≤ n}.
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Then Γn = Γ+
n ] Γ−n is a root system of Gn. The set Πn = {e1, e2 − e1, . . .,

en−en−1} is a simple system of Γn. As a set of simple reflections, the generating
set Rn of Gn is denoted by {sα : α ∈ Πn}. For further information on the
Coxeter groups of type Bn, one may apply [6].

Taking into account the defining relations of Gn, it is well-known by [6] that
there is a unique group homomorphism ε′ : Gn → {±1} such that ε′(t) = −1
and ε′(si) = 1 for i = 1, . . . , n− 1. Note that the function ε′ is just one of the

linear characters of Gn. If the kernel of ε′ is denoted by G
′

n, then kerε′ is a
normal subgroup of Gn of index two. From the definition of ε′, it follows that
an element w ∈ Gn is contained in G

′

n if and only if the number of the reflection

t occurring as a factor in a reduced expression of w is even. Let s0 := ts1t ∈ G
′

n

and let T ′n = Tn ∩G
′

n. Then T ′n �G
′

n. We set v1 = s0s1 and vi = sivi−1si for
any i, 2 ≤ i ≤ n − 1. Thus for each 1 ≤ i ≤ n − 1 the element vi is equal to
tti and so vi is an element of T ′n. We note here that every element vi ∈ T

′

n is a

commutator of Gn. It follows that the group T ′n is a normal subgroup of Tn of
index two and it is generated by the set {v1, . . . , vn−1}. Therefore, the group

G
′

n is a semidirect product G
′

n = Ξn n T ′n. Since s20 = 1, the generating set of

G
′

n is R
′

= {s0, s1, . . . , sn−1}. The reflection group G
′

n is a Coxeter group of
type Dn. Note that the Coxeter relations

(s0s1)2 = 1; (s0s2)3 = 1; (s0si)
2 = 1 for i ≥ 3

constitute a presentation of G
′

n. The symmetric group Ξn is a standard para-

bolic subgroup of G
′

n, but the Coxeter group G
′

n of type Dn is not a standard

parabolic subgroup of Gn. Now let l
′

denote the length function on G
′

n. From
Lemma 1.4.12(b) of [6], there exists the equality

(1) l(w) = l
′
(w) + lt(w)

for every w ∈ G′n.
For x, y ∈ Gn, the number of the factor t in a reduced expression of xyx−1y−1

in terms of the generating set Rn is even. Therefore, it is easily seen that the
commutator subgroup [Gn, Gn] of Gn is also a subgroup of G

′

n. Moreover,

[Gn, Gn] � G
′

n. In particular, for Ξn ≤ Gn we have [Ξn,Ξn] = Altn and so
Altn ≤ [Gn, Gn], where Altn stands for alternating subgroup of Ξn.

Proposition 2.1. The commutator subgroup [Gn, Gn] of Gn can be expressed

as a semidirect product [Gn, Gn] = Altn n T ′n.

Proof. Let sgn : G
′

n → {±1} be the sign character of G
′

n. Any element w ∈
ker(sgn) can be uniquely written as w = wSwT ′ such that wS ∈ Ξn and

wT ′ ∈ T
′

n. Since the number of the multipliers belong to Rn in a reduced
expression of wT ′ is even, then εn(wT ′) = 1, where εn is the sign character of
Gn. Hence by (1), the following equation holds:

sgn(w) = (−1)l
′
(w) = (−1)l(w) = εn(w) = εn(wS)εn(wT ′) = εn(wS).
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Thus we obtain that w ∈ ker(sgn) if and only if εn(wS) = 1, or equivalently

wS ∈ Altn. From this point of view, we have ker(sgn) ⊂ Altn n T ′n. It is clear

that the reverse inclusion holds. Hence ker(sgn) = Altn n T ′n. Since every

generator of T ′n is a commutator of Gn and T ′n is a normal subgroup of G
′

n, we

then get T ′n�[Gn, Gn]. If we consider the fact that the alternating group Altn is

a subgroup of [Gn, Gn], then we have AltnnT
′

n ≤ [Gn, Gn]. At the same time,
it can be easily seen that the commutator subgroup [Gn, Gn] is a subgroup of

ker(sgn). Hence, the commutator subgroup of Gn is [Gn, Gn] = Altn n T ′n, as
required. �

The commutator subgroup Altn n T ′n of Gn is extremely useful to obtain
all the linear characters of the Coxeter group Gn. Since the factor group
Gn/[Gn, Gn] is commutative, then all the characters of the factor group are
linear, and so irreducible. Likewise, the commutator subgroup [Gn, Gn] is the
intersection the kernels of all the linear characters of Gn. Thus, the commutator
subgroup of Gn can be obtained by using the character table of Gn. Hence, we
get Gn has four linear characters since |Gn/Altn n T ′n| = 4.

We write H for the commutator subgroup [Gn, Gn] of Gn. The factor group
Gn/H, the collection of the elements H, s1H, tH, s1tH, is Klein 4-group and it
is generated by the set {s1H, tH}. Therefore, all the characters of Gn/H are
as follows:

(1) f̃1(s1H) = 1, f̃1(tH) = 1 (the trivial character of Gn/H);

(2) f̃2(s1H) = −1, f̃2(tH) = −1 (the sign character of Gn/H);

(3) f̃3(s1H) = 1, f̃3(tH) = −1;

(4) f̃4(s1H) = −1, f̃4(tH) = 1.

Hence by lifting to Gn the characters f̃i, 1 ≤ i ≤ 4, we obtain the all linear
characters of Gn in the following way:

(1) f1(si) = 1, 1 ≤ i ≤ n− 1, f1(t) = 1 (the trivial character of Gn);
(2) f2(si) = −1, 1 ≤ i ≤ n− 1, f2(t) = −1 (the sign character of Gn);
(3) f3(si) = 1, 1 ≤ i ≤ n− 1, f3(t) = −1;
(4) f4(si) = −1, 1 ≤ i ≤ n− 1, f4(t) = 1.

There is the relation f4 = f3 · f2 between the characters f2, f3, f4. The
character f3 is nothing else but the function ε

′
given in the beginning of this

section.

3. About the some units of Mantaci-Reutenauer algebra

Now we recall the structure of Mantaci-Reutenauer algebra due to [3]:
For a positive integer n, a signed composition of n is an expression of n as a

finite sequence A = (a1, . . . , ak) whose each part consists of non-zero integers
such that the summation of the absolute values of all parts equals n. We

set |A| =
∑k
i=1 |ai|. In order to denote the set of all signed compositions of

n, we use the notation SC(n). Note that the size of SC(n) is 2 · 3n−1. Let
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A = (a1, . . . , ak) ∈ SC(n). If ai > 0 (resp. ai < 0) for every i ≥ 1, then A is
said to be a positive (resp. negative) signed composition of n . If ai < 0 for
every i ≥ 2, in this case A is called parabolic signed composition of n. Let
define A+ = (|a1|, . . . , |ar|). Then A+ is a positive signed composition of n.
We will denote by SC+(n) and SCp(n) the set of positive and parabolic signed
compositions of n, respectively. A double partition λ = (λ+;λ−) of n consists
of a pair of partitions λ+ and λ− such that |λ| = |λ+|+ |λ−| = n. If the length
of λ+ (resp. the length of λ−) is equal to zero, then we write ∅ instead of λ+

(resp. λ−). We denote the set of all double partitions of n by BP(n). For

a λ = (λ+;λ−) double partition of n, λ̂ denotes the signed composition of n

obtained by concatenating λ+ and −λ−, that is, λ̂ = λ+ t −λ− is the signed
composition obtained by appending the sequence of components of λ+ to that
of −λ− and let R

′

n be the set {s1 · · · sn−1, t0, t1, . . . , tn−1} [3].
In [3], the authors have introduced some reflection subgroup of Gn for any

signed composition of n as follows: For A = (a1, . . . , ak) ∈ SC(n), the set RA
is defined as

RA ={sp ∈ R−n : |a1|+ · · ·+ |ai−1|+ 1 ≤ p ≤ |a1|+ · · ·+ |ai| − 1}

∪ {t|a1|+···+|aj−1|+1 ∈ Tn | aj > 0} ⊂ R
′

n.

The reflection subgroup GA of Gn, which is generated by RA, is a Coxeter group
[3]. Let R

′

A = R
′

n ∩GA, ΓA = {α ∈ Γn : sα ∈ GA} and Γ+
A = ΓA ∩ Γ+

n . Thus

the set Γ+
A is a positive root system of ΓA and ΠA is a fundamental system

of ΓA contained in Γ+
A. Hence we write RA = {sα : α ∈ ΠA}. Moreover,

GA = ΞA+ n 〈TA〉, where TA = GA ∩ Tn. We use A ⊂ B if GA ⊂ GB . Denote
coxA the Coxeter element of GA attached to RA. For any A ∈ SC(n), the set
of distinguished coset representatives of GA in Gn is defined in the following
way:

DA = {x ∈ Gn : ∀ s ∈ RA, l(xs) > l(x)}.
In other words, the set DA can also be expressed as {x ∈ Gn : ∀ α ∈ ΠA, x(α) ∈
Γ+
n }. For A,B ∈ SC(n) such that B ⊂ A, the set DA

B = DB ∩ GA is also the
set of distinguished coset representatives of GB in GA. Setting

dA =
∑
w∈DA

w ∈ QGn,

then by [7] Mantaci-Reutenauer algebra, a subalgebra of group algebra QGn,
is described explicitly as follows:

MR(Gn) =
⊕

A∈SC(n)

QdA.

In [3], for A,B ∈ SC(n), the set of distinguished representatives of dou-
ble cosets GA\Gn/GB is defined as DAB = D−1A ∩ DB . Let the map Φn :

MR(Gn)→ QIrrGn be the unique Q-linear map such that Φn(dA) = IndGnGA1A
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for every A ∈ SC(n), where QIrrGn and 1A stand for the algebra of the ir-
reducible characters of Gn and the trivial character of GA, respectively. Fur-
thermore, it is well-known from [3] that the radical of MR(Gn) is KerΦn =∑
A≡nA′Q(dA − dA′).
Now we define φλ = IndGnGλ̂

1λ̂ for each λ ∈ BP(n). Let coxδ be a Coxeter el-

ement of Gδ̂ for a double partition δ of n. Since the matrix (φλ(coxδ))λ,δ∈BP(n)
is upper triangular and has positive diagonal entries, then (φλ(coxδ))λ,δ∈BP(n)
is invertible in Q. In what follows, the inverse of (φλ(coxδ))λ,δ∈BP(n) will be
denoted by (vλδ)λ,δ∈BP(n).

We have obtained in [1] that for each λ ∈ BP(n) the orthogonal primitive
idempotent ζλ =

∑
δ∈BP(n) vλδφδ of QIrrGn is also the characteristic class

function of Gn corresponding to the conjugate class Cλ. When we extend
linearly the class function ζλ to the group algebra QGn, we have the following
proposition.

Proposition 3.1. Let A,A′ ∈ SC(n) such that GA is Gn-conjugate to GA′ .
Then for each λ ∈ BP(n)

(2) |Cλ ∩DA| = |Cλ ∩DA′ |.

Proof. Because of the nilpotency of dA−dA′ , we immediately see that ζλ(dA) =
ζλ(dA′). Since ζλ is the characteristic class function, then the sizes of two sets
Cλ ∩DA and Cλ ∩DA′ are the same. �

As a result of the proposition given above, we say that if GA is conjugate to
GA′ under the action of Gn, then the sets of distinguished coset representatives
DA and DA′ are pointwise conjugate in the sense of [5, Theorem 1.1].

For a signed composition of B = (b1, . . . , br), in [3], the authors have defined
the sets AB = {s|b1|+···+|bi| : i ∈ [1, r] and bi < 0 and bi+1 > 0} and AB =

R
′

B]AB . Also they have assigned to each element x ∈ Gn a signed composition
C(x) ∈ SC(n) with a surjective map C : Gn → SC(n), x 7→ C(x). For instance,
the element (7. − 3 − 1. − 6.245) ∈ G7 corresponds to the signed composition
C(7. − 3 − 1. − 6.245) = (1,−2,−1, 3) ∈ SC(7). For a signed composition
A of n, let YA = {x ∈ Gn : C(x) = A}. Thus, there is a decomposition
Gn =

⊎
A∈SC(n) YA. Furthermore, setting

yA =
∑
w∈YA

w,

it is well-known that the collection {yA : A ∈ SC(n)} is another basis of the
algebra MR(Gn) in [3].

Lemma 3.2 ([3, Lemma 2.21]). For A,B ∈ SC(n). Then

(1) when YA ∩DB 6= ∅, the set YA is a subset of DB,
(2) the longest element ηA of DA is contained in YA and so YA ⊂ DA.
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The relation → on SC(n) is defined in [3] as follows: for A,B ∈ SC(n), we
write B → A if YB ⊂ DA or equivalently RA ⊂ AB . Transitive closure of → is
denoted by �. Thus by [3], the relation � is an partial order on SC(n), and
moreover, there is a decomposition DA =

⊎
B→A YB .

Since the Mantaci-Reutenauer algebra is an algebra with unity element 1, it
is possible to mention about the units of this algebra. Considering Theorem 3.3
and the structure ofMR(Gn), we shall investigate whether the basis elements
yA, A ∈ SC(n) of the algebra MR(Gn) are invertible.

For any λ ∈ BP(n), the algebra homomorphism τλ : MR(Gn) → Q, x 7→
Φn(x)(coxλ), which is defined in [3], is an irreducible character of MR(Gn).
Let x ∈ MR(Gn). Since the inner product of the characters Φn(x) and ζλ is

〈Φn(x), ζλ〉 = |Cλ|
|Gn|Φn(x)(coxλ), then we can express Φn(x) by

(3) Φn(x) =
∑

λ∈BP(n)

τλ(x)ζλ

in terms of the basis {ζλ : λ ∈ BP(n)} of QIrrGn.
Since the map Φ is a surjective algebra morphism, by [2] there is a collection

of orthogonal primitive idempotents (eλ)λ∈BP(n) of MR(Gn) which satisfies
the following conditions:

(1) ∀λ ∈ BP(n), Φn(eλ) = ζλ,
(2) ∀λ, µ ∈ BP(n), eλeµ = δλ,µeλ,
(3)

∑
λ∈BP(n) eλ = 1.

We denote
∑
BP(n)(Gn) the subspace of MR(Gn) spanned by the set

(eλ)λ∈BP(n), then we have a decomposition

MR(Gn) = KerΦn
⊕ ∑

BP(n)

(Gn).

Since each eλ for λ ∈ BP(n) is an orthogonal primitive idempotent, then the
subspace

∑
BP(n)(Gn) is also a subalgebra of MR(Gn). It is not difficult to

see that the set (eλ)λ∈BP(n) is a basis for
∑
BP(n)(Gn). Since every element of

KerΦn is nilpotent, neither element of KerΦn is unit in MR(Gn).

Theorem 3.3. Let x = a + b ∈ MR(Gn) such that a ∈ KerΦn and b ∈∑
BP(n)(Gn). The element x is a unit in MR(Gn) if and only if b is a unit in∑
BP(n)(Gn) if and only if τλ(b) 6= 0 for every λ ∈ BP(n).

Proof. Suppose x = a + b is a unit in MR(Gn). Then Φn(x) = Φn(b) is a
unit in QIrrGn. Taking into account (3), we have Φn(b) =

∑
λ∈BP(n) τλ(b)ζλ,

where τλ(b) 6= 0 for each λ ∈ BP(n). Assume to the contrary that τγ(b) equals
to zero for some γ ∈ BP(n). Then since the set {ζλ, λ ∈ BP(n)} consists of
orthogonal primitive idempotents, we have Φn(b) ·ζγ = τγ(b)ζγ = 0. Therefore,
Φn(b) is a non-zero zero divisor element and so it is not unit in QIrrGn. This
is a contradiction by assumption. Accordingly, τλ(b) 6= 0 for each λ ∈ BP(n).
This also shows that Φn(x)(w) = Φn(b)(w) 6= 0 for all w ∈ Gn.
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On the other hand, in order to prove sufficient condition we assume that
τλ(b) 6= 0 for every λ ∈ BP(n). Since the isomorphism

(4)
∑
BP(n)

(Gn) ∼= QIrrGn,

then we may write Φn(b) =
∑
λ∈BP(n) τλ(b)ζλ. If we consider the definition

of KerΦn, then we obtain Φn(a) = 0. From these facts, we get Φn(x) =∑
λ∈BP(n) τλ(x)ζλ. As τλ(x) 6= 0 for every λ ∈ BP(n), we conclude that

(5) Φn(x) · (
∑

λ∈BP(n)

1

τλ(x)
ζλ) =

∑
λ∈BP(n)

ζλ
2 =

∑
λ∈BP(n)

ζλ = 1.

As a consequence of (5), both Φn(x) and Φn(b) are units. From (4), the element
b is a unit inMR(Gn). Since a is a nilpotent element and b is a unit, then the
element x is invertible in MR(Gn). �

Example 3.4. In [3], Bonnafé and Hohlweg have obtained a collection of
orthogonal primitive idempotents of MR(G2) as follows:

e(2;∅) = d(2) −
1

2
d(1,1) −

1

2
d(1,−1) +

1

2
d(−1,1) −

1

2
d(−2) +

1

4
d(−1,−1),

e(1,1;∅) =
1

2
d(1,1) −

1

4
d(1,−1) −

1

4
d(−1,1) +

1

8
d(−1,−1),

e(1;1) =
1

2
d(1,−1) −

1

4
d(−1,−1),

e(∅;2) =
1

2
d(−2) −

1

4
d(−1,−1),

e(∅;1,1) =
1

8
d(−1,−1).

Also KerΦ2 = Q(d(1,−1)−d(−1,1)). If we consider the element y(1,1) ofMR(G2),
then it may be written as

y(1,1) =
1

2
(d(1,−1) − d(−1,1))− e(2;∅) + e(1,1;∅) − e(1;1) + e(∅;2) + e(∅;1,1).

Here, we see that the coefficient of each idempotent eλ, λ ∈ BP(2) in the
expression above is different from zero. From Theorem 3.3, y(1,1) is invertible
in MR(G2). In fact, the inverse of y(1,1) is itself, for if Φ2(y(1,1)) = f4 and f4
is a linear character of the Coxeter group G2.

Let A ∈ SC+(n). Then A+ = A and Tn ≤ WA and so we have obtained
that the longest element wn = t0 · · · tn−1 belongs to WA and the inclusion
YA ⊂ DA ⊂ Ξn holds. Moreover, the set {YA : A ∈ SC+(n)} is a partition of
the symmetric group Ξn. Thus Ξn can be expressed as

Ξn = D(1,1,...,1) =
∐

A∈SC+(n)

YA.
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Since the reflection subgroup GA is a semidirect product of ΞA and Tn, then
we may write

Gn = DAGA = DA(ΞA n Tn).

Thus, each element w ∈ Gn is uniquely expressible in the form w = dAwA =
dAwSwT . Since Gn = ΞnnTn, then Ξn = DAΞA. As a consequence, DA is the
set of distinguished coset representatives of ΞA in Ξn, since ΞA is a standard
parabolic subgroup of Ξn.

Example 3.5. For A = (3, 1) ∈ SC(4), we have the generating set R(3,1) =
{s1, s2, t1, t4}. Since G(3,1) = Ξ(3,1) n T4 = 〈s1, s2〉 n T4, then we get G4 =
D(3,1)G(3,1) = (D(3,1)〈s1, s2〉) n T4. Thus D(3,1) is the collection of distin-
guished coset representatives of the reflection subgroup Ξ(3,1) = 〈s1, s2〉 in Ξ4.
Furthermore, we have D(3,1) = {1, s3, s2s3, s1s2s3} and so D(3,1) ⊂ Ξ4. We
also note that Y(3,1) = {s3, s2s3, s1s2s3} ⊂ D(3,1).

Now for A ∈ SC+(n), we define the set

ỸA = {x ∈ Ξn : x ∈ DA and l(xsα) < l(x) for all sα ∈ R−n\RA}.

The following lemma gives us the relation between the sets ỸA and YA.

Lemma 3.6. If A is a positive signed composition of n, then we have

(6) YA = ỸA.

Proof. Let A = (a1, a2, . . . , ar) ∈ SC+(n). Then two subsets YA and ỸA of
Gn are contained in Ξn. We first assume that w is any element of YA. Since
R−n\RA equals the set {sa1 , sa1+a2 , . . . , sa1+a2+···+ar−1

} and C(w) = A, so we
have

w(ea1+a2+···+ai+1 − ea1+a2+···+ai) = w(ea1+a2+···+ai+1)− w(ea1+a2+···+ai) < 0

for all 1 ≤ i ≤ r − 1. For this reason, we obtain l(wsa1+a2+···+ai) < l(w) and

so w ∈ ỸA. The reverse inclusion follows immediately from the definitions of

the sets ỸA and YA. This completes the proof. �

Example 3.7. For the positive signed composition A = (3, 1) of n = 4, from

Lemma 3.6 the set Y(3,1) = {s3, s2s3, s1s2s3} coincides with the set Ỹ(3,1) =
{w ∈ Ξ4 : w ∈ DA and l(wsα) < l(w) for all sα ∈ R−4\RA}. In fact, the set
R−4\RA is {s3} and any element w in Y(3,1) satisfies the condition w(e4−e3) <

0, thus l(ws3) < l(w). On the other hand, for every w ∈ Ỹ(3,1) the relations
w(e2 − e1) > 0, w(e3 − e2) > 0 and w(e4 − e3) < 0 are hold, so we may write
w(e1) < w(e2) < w(e3) > w(e4) > 0. Therefore, we have C(w) = (3, 1). This
means that w ∈ Y(3,1).

It follows from part (2) of Lemma 3.2 that when A ⊂ B for A,B ∈ SC(n)
there exists the relation B → A.

Proposition 3.8. If A ∈ SC+(n) and B → A, then we have A ⊂ B.
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Proof. Since the signed composition B can be obtained by means of refinement
from A in the sense of [3], then B is a positive signed composition of n. The
set AB is empty because of B ∈ SC+(n). From the definition of →, we get

RA ⊂ AB = R
′

B ]AB . We deduce from this that RA ⊂ R
′

B and so GA ⊂ GB .
Therefore, we conclude that A ⊂ B, as desired. �

As a result of Proposition 3.8, for A ∈ SC+(n), we have DA =
⊎
B→A YB =⊎

A⊂B YB . Thus, we may write dA =
∑
A⊂B yB as in [8]. From Möbius Inver-

sion Formula, we obtain that

(7) yA =
∑
A⊂B

(−1)|R
′
B |−|R

′
A|dB .

Since A is a positive signed composition of n, then |R′A| = n + |R−n ∩ RA|.
Hence the equation (7) can be rewritten as

yA =
∑
A⊂B

(−1)(|R−n∩RB |−|R−n∩RA|)dB .

As the longest element σn ∈ Ξn is not central, by [4, Proposition 2.1] some
elements yA, A ∈ SC+(n) are not invertible, i.e., one can find an element
w ∈ Ξn ≤ Gn such that Φn(yA)(w) = 0. For each A ∈ SC+(n), there is the
unique B ∈ SC−(n) (all components of B are negative) such that

(8) YB = YAwn,

where wn is the longest element of Gn. If we take the image of the both sides
of equation (8) under the map Φn and take into account the fact Φn(wn) = f2
in [8], then we have reached that

(9) Φn(yA) = f2Φn(yB)

and so we say from the equation (9) that yA is invertible if and only if yB is
invertible. It is clear from the equation (9) that Φn(y(n))f2 = Φn(y(−1,...,−1))

and Φn(y(1,...,1))f2 = Φn(y(−n)). For A = (1, . . . , 1), (n) ∈ SC+(n), there is
not any element w of Gn such that Φn(yA)(w) = 0. Therefore, not only the
elements y(n) and y(1,...,1) but the elements y(−n) and y(−1,...,−1) are invertible
as well.

Example 3.9. Let n ≥ 2. Since

Y(n−1,1) = {sn−1, sn−2sn−1, . . . , s1s2 · · · sn−2sn−1}, D(n−1,1) = Y(n−1,1) ] Y(n)
and |D(n−1,1)| = n, then we have

D(n−1,1) = {1, sn−1, sn−2sn−1, . . . , s1s2 · · · sn−2sn−1}.
Accordingly, for every n ≥ 3,

D(n−1,1)(n−1,1) = {1, sn−1},
from this Φn(d(n−1,1))(cox(n−1;1)) = 1. Hence

Φn(y(n−1,1))(cox(n−1;1)) = Φn(d(n−1,1))(cox(n−1;1))− Φn(d(n))(cox(n−1;1)) = 0
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and so the element y(n−1,1) is not invertible in MR(Gn).

Lemma 3.10. Let A ∈ SC(n) such that it is different from both positive and
negative signed composition of n. Then

(10) (−n) 6→ A.

Proof. By our assumption on A, the generating set RA contains some element
of Tn. We know that R

′

−n = R−n and A(−n) = ∅. Therefore, we may write

RA 6⊂ A(−n) = R
′

−n = R−n. Thus (−n) 6→ A, as desired. �

When A ∈ SC(n) has both positive and negative parts, then for any B ∈
SC−(n) the relation B 6→ A already holds as a consequence of the proof of
Lemma 3.10. On account of this reason, the basis elements y(−n) and yB do
not occur in the expression of the basis element dA in terms of the basis set
{yC : C ∈ SC(n)}. Since the relation � is an order on SC(n) and (−n) 6→ A,
by Möbius Inversion Formula, we obtain that the element d(−n) does not ap-
pear in the expression of yA in terms of the basis {dC : C ∈ SC(n)}. Denote
the first point by YE , which is corresponding to positive signed composition,
in the expression of the set of distinguished coset representatives DA in terms
of {YC : C ∈ SC(n)} is obtained by means of broken operator, which is de-
fined in [3]. Then, from YE on, it is obtained the decomposition of DE into
the sets YK corresponding to positive signed compositions K, which can be
obtained by the refinement of E. Thus the term d(n) is not included in the
expression of yA in terms of the elements dC , C ∈ SC(n). Consequently, we
have Φn(yA)(s1 · · · sn−1) = 0. Hence the basis element yA is not invertible in
MR(Gn).

Example 3.11. We consider the signed composition A = (1, 1,−1, 1) ∈ SC(4).
Then, we have

D(1,1,−1,1)

= Y(1,1,−1,1) ] Y(1,1,1,1) ] Y(2,1,1) ] Y(1,2,1) ] Y(1,1,2) ] Y(2,2) ] Y(1,3) ] Y(3,1) ] Y(4)
and it is easily seen from the above that the first term, which is corresponding to
positive signed composition, in this decomposition is E = (1, 1, 1, 1) ∈ SC+(4).
Thus, we have D(1,1,1,1) = Y(1,1,1,1)]Y(2,1,1)]Y(1,2,1)]Y(1,1,2)]Y(2,2)]Y(1,3)]
Y(3,1)]Y(4). Since y(1,1,−1,1) = d(1,1,−1,1)−d(1,1,1,1), then the element d(4) does
not seem in this expression.

Now we give an example to illustrate the method in the preceding paragraph.

Example 3.12. Expression of the basis elements yA in terms of another basis
elements {dA : A ∈ SC(3)} in MR(G3) is as follows:

(1) y(3) = d(3) = 1,
(2) y(2,1) = d(2,1) − d(3),
(3) y(1,2) = d(1,2) − d(3),
(4) y(1,1,1) = d(1,1,1) − d(2,1) − d(1,2) + d(3),
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(5) y(2,−1) = d(2,−1) − d(2,1),
(6) y(−1,2) = d(−1,2) − d(1,2),
(7) y(1,−2) = d(1,−2) − d(1,2) − d(1,−1,1) + d(1,1,1),
(8) y(−2,1) = d(−2,1) − d(2,1) − d(−1,1,1) + d(1,1,1),
(9) y(1,−1,1) = d(1,−1,1) − d(1,1,1),

(10) y(1,1,−1) = y(−2,1)w3,
(11) y(−1,1,1) = y(1,−2)w3,
(12) y(1,−1,−1) = y(−1,2)w3,
(13) y(−1,1,−1) = y(1,−1,1)w3,
(14) y(−1,−1,1) = y(2,−1)w3,
(15) y(−3) = y(1,1,1)w3,
(16) y(−2,−1) = y(1,2)w3,
(17) y(−1,−2) = y(2,1)w3,
(18) y(−1,−1,−1) = y(3)w3,

where w3 = t0t1t2 is the longest element of G3. By using the character table of
MR(G3) given in [2], for A ∈ SC(3)\{(3), (1, 1, 1), (−3), (−1,−1,−1)}, we see
that there exists some w ∈ G3 such that Φ3(yA)(w) = 0. Thus the elements
yA are not invertible in MR(G3).
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