ON CONTINUOUS LINEAR JORDAN DERIVATIONS OF BANACH ALGEBRAS

  • Park, Kyoo-Hong (DEPARTMENT OF MATHEMATICS EDUCATION, SEOWON UNIVERSITY) ;
  • Kim, Byung-Do (DEPARTMENT OF MATHEMATICS, KANGNUNG NATIONAL UNIVERSITY)
  • Published : 2009.05.31

Abstract

Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $[D(x),\;x]D(x)^2[D(x),\;x]\;{\in}\;rad(A)$ for all $x\;{\in}\;A$. Then we have D(A) $\subseteq$ rad(A).

Keywords

References

  1. F. F. Bonsall & J. Duncan: Complete Normed Algebras. Berlin-Heidelberg-New York, 1973.
  2. M. Bresar : Derivations of noncommutative Banach algebras II. Arch. Math. 63 (1994), 56-59. https://doi.org/10.1007/BF01196299
  3. M. Bresar : Jordan derivations on semiprime rings. Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
  4. L. O. Chung & J. Luh: Semiprime rings with nilpotent derivatives. Canad. Math. Bull. 24 (1981), no. 4, 415-421. https://doi.org/10.4153/CMB-1981-064-9
  5. B. E. Johnson & A.M. Sinclair: Continuity of derivations and a problem of Kaplansky. Amer. J. Math. 90 (1968), 1067-1073. https://doi.org/10.2307/2373290
  6. B.-D. Kim: On the derivations of semiprime rings and noncommutative Banach algebras. Acta Mathematica Sinica 16 (2000), no. 1, 21-28. https://doi.org/10.1007/s101149900020
  7. B.-D. Kim : Derivations of semiprime rings and noncommutative Banach algebras. Commun. Korean Math. Soc. 17 (2002), no. 4, 607-618. https://doi.org/10.4134/CKMS.2002.17.4.607
  8. B.-D. Kim : Jordan derivations of semiprime rings and noncommutative Banach algebras, I. J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math. 15 (2008), no. 2, 179-201.
  9. B.-D. Kim : Jordan derivations of semiprime rings and noncommutative Banach algebras, II. J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math. 15 (2008), no. 3, 259-296.
  10. A. M. Sinclair: Jordan homohorphisms and derivations on semisimple Banach algebras. Proc. Amer. Math. Soc. 24 (1970), 209-214.
  11. I. M. Singer & J. Wermer: Derivations on commutative normed algebras. Math. Ann. 129 (1955), 260-264. https://doi.org/10.1007/BF01362370
  12. K-H. Park : On 4-permuting 4-derivations in prime and semiprime rings. J. Korea Soc. Math. Educ. Ser. B : Pure Appl. Math. 14 (2007), no. 4, 271-278.
  13. M. P. Thomas: The image of a derivation is contained in the radical. Annals of Math. 128 (1988), 435-460. https://doi.org/10.2307/1971432
  14. J. Vukman: A result concerning derivations in noncommutative Banach algebras. Glasnik Mathematicki 26 (1991), no. 46, 83-88.
  15. J. Vukman : On derivations in prime rings and Banach algebra. Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884. https://doi.org/10.1090/S0002-9939-1992-1072093-8
  16. J. Vukman : On left Jordan derivations of rings and Banach algebras. Aequationes. Math. 75 (2008), 260-266. https://doi.org/10.1007/s00010-007-2872-z