VECTOR GENERATORS OF THE REAL CLIFFORD ALGEBRA $C \ell_{0, n}$

Youngkwon Song* and Doohann Lee**

Abstract

In this paper, we present new vector generators of a matrix subalgebra $L_{0, n}$, which is isomorphic to the Clifford algebra $C \ell_{0, n}$, and we obtain the matrix form of inverse of a vector in $L_{0, n}$. Moreover, we consider the solution of a linear equation $x g_{2}=g_{2} x$, where g_{2} is a vector generator of $L_{0, n}$.

1. Introduction

Let $\mathbb{R}^{p, q}$ be the standard n-dimensional pseudo-Euclidean space endowed with the quadratic form $Q(v)=\sum_{i=1}^{p} v_{i}^{2}-\sum_{i=p+1}^{p+q} v_{i}^{2}$ of signature (p, q) with $p+q=n$. Also, let $C \ell_{p, q}$ be the corresponding real Clifford algebra of $\mathbb{R}^{p, q}$.

The Clifford algebras are isomorphic to some matrix algebras. In particular, we constructed the subalgebra $L_{0, n}(\mathbb{R})$ of the $2^{n} \times 2^{n}$ real matrix algebra $M_{2^{n}}(\mathbb{R})$ for every $n \in \mathbb{N}$ which is isomorphic to the real Clifford algebra $C \ell_{0, n}$ and called it the "OE-construction" [2]. Also, we showed $g_{2}, g_{3}, g_{7}, \ldots, g_{2^{n}-1}$ are vector generators of $L_{0, n}(\mathbb{R})$ and proved some interesting properties.

In section 2 , we will show that $g_{2}, g_{4}, g_{8}, \ldots, g_{2^{n}}$ are another vector generators of $L_{0, n}(\mathbb{R})$.

In section 3, we will prove some interesting properties of the vector generators $g_{2}, g_{4}, g_{8}, \ldots, g_{2^{n}}$ comparing with those of vector generators $g_{2}, g_{3}, g_{7}, \ldots, g_{2^{n}-1}$. More concretely, we will calculate the determinant

[^0]of a linear combination of generators in $L_{0, n}(\mathbb{R})$ which are different from those in [2] and we obtain the matrix form of inverse of a vector in $L_{0, n}$.

In section 4, we will consider the existence of solutions for some simple linear equation $x a=a x$ in $L_{0, n}(\mathbb{R})$. In fact, by using the construction of matrix representation in [2], the solution set can be obtained easily in some sense. Furthermore the solution set of the equation can be considered in the Clifford algebra $C \ell_{0, n}$, since $L_{0, n}(\mathbb{R})$ is isomorphic to the Clifford algebra $C \ell_{0, n}$.

2. Generators of the algebra $L_{0, n}(\mathbb{R})$

In [2], we constructed vector generators $g_{2}, g_{3}, g_{7}, \ldots, g_{2^{n}-1}$ of the subalgebra $L_{0, n}(\mathbb{R})$ of the $2^{n} \times 2^{n}$ real matrix algebra $M_{2^{n}}(\mathbb{R})$ for every $n \in \mathbb{N}$ and proved some interesting properties. In this section, we will show $g_{2}, g_{4}, g_{8}, \ldots, g_{2^{n}}$ are another vector generators of $L_{0, n}(\mathbb{R})$ and prove some interesting properties comparing with those of vector generators $g_{2}, g_{3}, g_{7}, \ldots, g_{2^{n}-1}$. First of all, recall some notations given in [2].

Notation. Let

$$
E=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad J=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Moreover, let $K_{1}=J$ and

$$
K_{m-2}=\left(\begin{array}{cccc}
O_{2} & \cdots & O_{2} & J \\
O_{2} & \cdots & J & O_{2} \\
\vdots & \ddots & \vdots & \vdots \\
J & \cdots & O_{2} & O_{2}
\end{array}\right) \in M_{2^{m-2}}(\mathbb{R})
$$

for $4 \leq m \leq n$. Also, let

$$
T_{m-1}=\left(\begin{array}{cc}
O_{2^{m-2}} & -K_{m-2} \\
K_{m-2} & O_{2^{m-2}}
\end{array}\right) \in M_{2^{m-1}}(\mathbb{R})
$$

for $3 \leq m \leq n$.
REmark 2.1. By using the above notations, $g_{2^{i}} \in L_{0, n}(\mathbb{R})$ for $i=$ $1,2, \ldots, n$ can be written as follows:

$$
g_{2}=\left(\begin{array}{cccc}
E & O_{2} & \cdots & O_{2} \\
O_{2} & E & \cdots & O_{2} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2} & O_{2} & \cdots & E
\end{array}\right) \in M_{2^{n}(\mathbb{R}), ~}
$$

$$
g_{2^{m-1}}=\left(\begin{array}{cccc}
T_{m-1} & O_{2^{m-1}} & \cdots & O_{2^{m-1}} \\
O_{2^{m-1}} & T_{m-1} & \cdots & O_{2^{m-1}} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2^{m-1}} & O_{2^{m-1}} & \cdots & T_{m-1}
\end{array}\right) \in M_{2^{n}}(\mathbb{R}),
$$

for $3 \leq m \leq n$, and

$$
g_{2^{n}}=\left(\begin{array}{cccccc}
O_{2} & \cdots & O_{2} & O_{2} & \cdots & -J \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
O_{2} & \cdots & O_{2} & -J & \cdots & O_{2} \\
O_{2} & \cdots & J & O_{2} & \cdots & O_{2} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
J & \cdots & O_{2} & O_{2} & \cdots & O_{2}
\end{array}\right) \in M_{2^{n}}(\mathbb{R}) .
$$

Let $\Gamma=\left\{g_{2}, g_{2^{2}}, \ldots, g_{2^{n}}\right\}$. Then, $g_{2^{i}} \in \Gamma$ has the following properties:
Lemma 2.2. Let $g_{2^{i}} \in \Gamma$. Then,
(1) $g_{2^{i}}$ is antisymmetric for all $i=1,2, \ldots, n$.
(2) $g_{2^{i}}^{2}=-I_{2^{n}}$ for all $i=1,2, \ldots, n$.

Proof. (1) It is obvious from the definition of g_{2}.
(2) Since $E^{2}=-I_{2}$ and $J^{2}=I_{2}$, we obtain $g_{2^{i}}^{2}=-I_{2^{n}}$ by straightforward computations.

Moreover, any two elements in Γ are anticommutative as follows:
Proposition 2.3. For all $i \geq 2$, we have $g_{2} g_{2^{i}}=-g_{2^{i}} g_{2}$.
Proof. For $i=2, g_{2} g_{2^{i}}=-g_{2^{i}} g_{2}$, since $E J=-J E$.
Now, assume that $g_{2} g_{2^{k}}=-g_{2^{k}} g_{2}$. Note that

$$
g_{2}=\left(\begin{array}{cccc}
E & O_{2} & \cdots & O_{2} \\
O_{2} & E & \cdots & O_{2} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2} & O_{2} & \cdots & E
\end{array}\right), \quad g_{2^{k}}=\left(\begin{array}{cccc}
T_{k} & O_{2^{k}} & \cdots & O_{2^{k}} \\
O_{2^{k}} & T_{k} & \cdots & O_{2^{k}} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2^{k}} & O_{2^{k}} & \cdots & T_{k}
\end{array}\right) .
$$

Set

$$
g_{2}^{(k)}=\left(\begin{array}{cccc}
E & O_{2} & \cdots & O_{2} \\
O_{2} & E & \cdots & O_{2} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2} & O_{2} & \cdots & E
\end{array}\right) \in M_{2^{k}(\mathbb{R}) .}
$$

Then, from the equation $g_{2} g_{2^{k}}=-g_{2^{k}} g_{2}$, we have

$$
g_{2}^{(k)} T_{k}=-T_{k} g_{2}^{(k)} .
$$

Thus,

$$
\left(\begin{array}{cc}
g_{2}^{(k-1)} & O_{2^{k-1}} \\
O_{2^{k-1}} & g_{2}^{(k-1)}
\end{array}\right)\left(\begin{array}{cc}
O_{2^{k-1}} & -K_{k-1} \\
K_{k-1} & O_{2^{k-1}}
\end{array}\right)=-\left(\begin{array}{cc}
O_{2^{k-1}} & -K_{k-1} \\
K_{k-1} & O_{2^{k-1}}
\end{array}\right)\left(\begin{array}{cc}
g_{2}^{(k-1)} & O_{2^{k-1}} \\
O_{2^{k-1}} & g_{2}^{(k-1)}
\end{array}\right),
$$

which implies that $g_{2}^{(k-1)} K_{k-1}=-K_{k-1} g_{2}^{(k-1)}$.
To prove $g_{2} g_{2^{k+1}}=-g_{2^{k+1}} g_{2}$, it is enough to show that $g_{2}^{(k+1)} T_{k+1}=$ $-T_{k+1} g_{2}^{(k+1)}$.

Since

$$
g_{2}^{(k+1)}=\left(\begin{array}{cccc}
g_{2}^{(k-1)} & O_{2 k-1} & O_{2^{k-1}} & O_{2^{k-1}} \\
O_{2^{k-1}} & g_{2}^{k-1)} & O_{2^{k-1}} & O_{2^{k-1}} \\
O_{2^{k-1}} & O_{2^{k-1}} & g_{2}^{(k-1)} & O_{2^{k-1}} \\
O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}} & g_{2}^{(k-1)}
\end{array}\right)
$$

and

$$
T_{k+1}=\left(\begin{array}{cccc}
O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}} & -K_{k-1} \\
O_{2^{k-1}} & O_{2^{k-1}} & -K_{k-1} & O_{2^{k-1}} \\
O_{2^{k-1}} & K_{k-1} & O_{2^{k-1}} & O_{2^{k-1}} \\
K_{k-1} & O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}}
\end{array}\right),
$$

we have

$$
\begin{aligned}
g_{2}^{(k+1)} T_{k+1} & =\left(\begin{array}{cccc}
O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}} & -g_{2}^{(k-1)} K_{k-1} \\
O_{2^{k-1}} & O_{2^{k-1}} & -g_{2}^{(k-1)} K_{k-1} & O_{2^{k-1}} \\
O_{2^{k-1}} & g_{2}^{(k-1)} K_{k-1} & O_{2^{k-1}} & O_{2^{k-1}} \\
g_{2}^{(k-1)} K_{k-1} & O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}} & K_{k-1} g_{2}^{(k-1)} \\
O_{2^{k-1}} & O_{2^{k-1}} & K_{k-1} g_{2}^{(k-1)} & O_{2^{k-1}} \\
O_{2^{k-1}} & -K_{k-1} g_{2}^{(k-1)} & O_{2^{k-1}} & O_{2^{k-1}} \\
-K_{k-1} g_{2}^{(k-1)} & O_{2^{k-1}} & O_{2^{k-1}} & O_{2^{k-1}}
\end{array}\right) \\
& =-T_{k+1} g_{2}^{(k+1)} .
\end{aligned}
$$

Thus, the equation $g_{2}^{(k+1)} T_{k}=-T_{k} g_{2}^{(k+1)}$ holds and so the proposition is proved.

Proposition 2.4. For every $i, j \geq 2$ with $i \neq j$, we have $g_{2^{i}} g_{2^{j}}=$ $-g_{2^{j}} g_{2^{i}}$.

Proof. Note that
$g_{2^{i}}=\left(\begin{array}{cccc}T_{i} & O_{2^{i}} & \cdots & O_{2^{i}} \\ O_{2^{i}} & T_{i} & \cdots & O_{2^{i}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i}} & O_{2^{i}} & \cdots & T_{i}\end{array}\right), \quad g_{2^{i+1}}=\left(\begin{array}{cccc}T_{i+1} & O_{2^{i+1}} & \cdots & O_{2^{i+1}} \\ O_{2^{i+1}} & T_{i+1} & \cdots & O_{2^{i+1}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i+1}} & O_{2^{i+1}} & \cdots & T_{i+1}\end{array}\right)$.
To prove the equality $g_{2^{i}} g_{2^{i+1}}=-g_{2^{i+1}} g_{2^{i}}$, it is enough to show that the following identity is satisfied:

$$
\left(\begin{array}{cc}
T_{i} & O_{2^{i}} \\
O_{2^{i}} & T_{i}
\end{array}\right) T_{i+1}=-T_{i+1}\left(\begin{array}{cc}
T_{i} & O_{2^{i}} \\
O_{2^{i}} & T_{i}
\end{array}\right)
$$

Since

$$
\left(\begin{array}{cc}
T_{i} & O_{2^{i}} \\
O_{2^{i}} & T_{i}
\end{array}\right)=\left(\begin{array}{cccc}
O_{2^{i-1}} & -K_{i-1} & O_{2^{i-1}} & O_{2^{i-1}} \\
K_{i-1} & O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}} \\
O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}} & -K_{i-1} \\
O_{2^{i-1}} & O_{2^{i-1}} & K_{i-1} & O_{2^{i-1}}
\end{array}\right)
$$

and

$$
T_{i+1}=\left(\begin{array}{cccc}
O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}} & -K_{i-1} \\
O_{2^{i-1}} & O_{2^{i-1}} & -K_{i-1} & O_{2^{i-1}} \\
O_{2^{i-1}} & K_{i-1} & O_{2^{i-1}} & O_{2^{i-1}} \\
K_{i-1} & O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}}
\end{array}\right)
$$

the following equalities hold:

$$
\begin{aligned}
\left(\begin{array}{cc}
T_{i} & O_{2^{i}} \\
O_{2^{i}} & T_{i}
\end{array}\right) T_{i+1} & =\left(\begin{array}{cccc}
O_{2^{i-1}} & O_{2^{i-1}} & K_{i-1}^{2} & O_{2^{i-1}} \\
O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}} & -K_{i-1}^{2} \\
-K_{i-1}^{2} & O_{2^{i-1}} & O_{2^{i-1}} & O_{2^{i-1}} \\
O_{2^{i-1}} & K_{i-1}^{2} & O_{2^{i-1}} & O_{2^{i-1}}
\end{array}\right) \\
& =-T_{i+1}\left(\begin{array}{cc}
T_{i} & O_{2^{i}} \\
O_{2^{i}} & T_{i}
\end{array}\right)
\end{aligned}
$$

Thus, the equality $g_{2^{i}} g_{2^{i+1}}=-g_{2^{i+1}} g_{2^{i}}$ is proved.
Now, we assume that the equality $g_{2^{i}} g_{2^{i+k}}=-g_{2^{i+k}} g_{2^{i}}$ is true for a natural number k. Then we show the equality $g_{2^{i}} g_{2^{i+k+1}}=-g_{2^{i+k+1}} g_{2^{i}}$.

Note that
$g_{2^{i}}=\left(\begin{array}{cccc}T_{i} & O_{2^{i}} & \cdots & O_{2^{i}} \\ O_{2^{i}} & T_{i} & \cdots & O_{2^{i}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i}} & O_{2^{i}} & \cdots & T_{i}\end{array}\right), g_{2^{i+k}}=\left(\begin{array}{cccc}T_{i+k} & O_{2^{i+k}} & \cdots & O_{2^{i+k}} \\ O_{2^{i+k}} & T_{i+k} & \cdots & O_{2^{i+k}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i+k}} & O_{2^{i+k}} & \cdots & T_{i+k}\end{array}\right)$.

Now, set

$$
g_{2^{i}}^{(i+k)}=\left(\begin{array}{cccc}
T_{i} & O_{2^{i}} & \cdots & O_{2^{i}} \\
O_{2^{i}} & T_{i} & \cdots & O_{2^{i}} \\
\vdots & \vdots & \ddots & \vdots \\
O_{2^{i}} & O_{2^{i}} & \cdots & T_{i}
\end{array}\right) \in M_{2^{i+k}}(\mathbb{R}) .
$$

Then, the equality $g_{2^{i}} g_{2^{i+k}}=-g_{2^{i+k}} g_{2^{i}}$ implies that

$$
g_{2^{i}}^{(i+k)} T_{i+k}=-T_{i+k} g_{2^{i}}^{(i+k)}
$$

and so

$$
g_{2^{i}}^{(i+k-1)} K_{i+k-1}=-K_{i+k-1} g_{2^{i}}^{(i+k-1)}
$$

since

$$
T_{i+k}=\left(\begin{array}{cc}
O_{2^{i+k-1}} & -K_{i+k-1} \\
K_{i+k-1} & O_{2^{i+k-1}}
\end{array}\right)
$$

Note that
$g_{2^{i}} g_{2^{i+k+1}}=\left(\begin{array}{cccc}T_{i} & O_{2^{i}} & \cdots & O_{2^{i}} \\ O_{2^{i}} & T_{i} & \cdots & O_{2^{i}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i}} & O_{2^{i}} & \cdots & T_{i}\end{array}\right)\left(\begin{array}{cccc}T_{i+k+1} & O_{2^{i+k+1}} & \cdots & O_{2^{i+k+1}} \\ O_{2^{i+k+1}} & T_{i+k+1} & \cdots & O_{2^{i+k+1}} \\ \vdots & \vdots & \ddots & \vdots \\ O_{2^{i+k+1}} & O_{2^{i+k+1}} & \cdots & T_{i+k+1}\end{array}\right)$
and

$$
T_{i+k+1}=\left(\begin{array}{cccc}
O_{2^{i+k-1}} & O_{2^{i+k-1}} & O_{2^{i+k-1}} & -K_{i+k-1} \\
O_{2^{i+k-1}} & O_{2^{i+k-1}} & -K_{i+k-1} & O_{2^{i+k-1}} \\
O_{2^{i+k-1}} & K_{i+k-1} & O_{2^{i+k-1}} & O_{2^{i+k-1}} \\
K_{i+k-1} & O_{2^{i+k-1}} & O_{2^{i+k-1}} & O_{2^{i+k-1}}
\end{array}\right)
$$

Thus, the equality

$$
g_{2^{i}} g_{2^{i+k+1}}=-g_{2^{i+k+1}} g_{2^{i}}
$$

holds, since $g_{2^{i}}^{(i+k-1)} K_{i+k-1}=-K_{i+k-1} g_{2^{i}}^{(i+k-1)}$.
From Lemma 2.2 (2), Proposition 2.3 and Proposition 2.4, we obtain the main result as follows:

ThEOREM 2.5. $g_{2}, g_{4}, g_{8}, \ldots, g_{2^{n}}$ are vector generators of $L_{0, n}(\mathbb{R})$, which is isomorphic to the Clifford algebra $C \ell_{0, n}$.

Remark 2.6. Recall the Pauli spin matrices $\sigma_{1}, \sigma_{2}, \sigma_{3}$ defined by

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and let $\sigma_{4}=\sigma_{1} \sigma_{3}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. From the process of "OE-construction" given in [2], we can express g_{2}, g_{4}, g_{8} in $L_{0,3}(\mathbb{R})$ by means of tensor products. That is to say,

$$
g_{2}=I_{2} \otimes I_{2} \otimes \sigma_{4}, \quad g_{4}=I_{2} \otimes \sigma_{4} \otimes \sigma_{1}, \quad g_{8}=\sigma_{4} \otimes \sigma_{1} \otimes \sigma_{1} .
$$

Since $\sigma_{1}^{2}=I_{2}, \sigma_{4}^{2}=-I_{2}$ and $\sigma_{1} \sigma_{4}=-\sigma_{4} \sigma_{1}$, we obtain that $g_{2 i}^{2}=-I_{8}$, and $g_{2^{i}} g_{2^{j}}=-g_{2 j} g_{2^{i}}$ for $i \neq j$.

3. Inverse of vectors in $L_{0, n}(\mathbb{R})$

In this section, we will present the matrix representation of the inverse of a vector in $L_{0, n}(\mathbb{R})$. Set $\Delta=\left\{\sum_{i=1}^{n} a_{i} g_{2^{i}}: a_{i} \in \mathbb{R}, i=1,2, \ldots, n\right\}$, the set of all vectors of $L_{0, n}(\mathbb{R})$ in section 2 . Then, the matrix $A \in \Delta$ satisfies some interesting properties as follows:

Proposition 3.1. Let $A=\sum_{i=1}^{n} a_{i} g_{2^{i}} \neq O_{2^{n}} \in \Delta$. Then,
(1) $\operatorname{det}(A)= \pm\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{2^{n-1}}$.
(2) $A^{-1}=\frac{-1}{\sum_{i=i}^{n} a_{i}^{2}} A$.

Proof. (1) Since $g_{2^{i}}$ is antisymmetric, $A^{T}=-\sum_{i=1}^{n} a_{i} g_{2^{i}}$. Also, by proposition 2.3, 2.4,

$$
A A^{T}=\left(\sum_{i=1}^{n} a_{i}^{2}\right) I_{2^{n}} .
$$

Thus,

$$
\operatorname{det}(A)^{2}=\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{2^{n}}
$$

and so

$$
\operatorname{det}(A)= \pm\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{2^{n-1}}
$$

(2) Since $A A^{T}=\left(\sum_{i=1}^{n} a_{i}^{2}\right) I_{2^{n}}$ and $A^{T}=-A$, the identity $A^{-1}=$ $\frac{-1}{\sum_{i=1}^{n} a_{i}^{2}} A$ can be obtained.

Example 3.2. Let $n=7$ and $A=g_{2}-3 g_{16}+2 g_{64}+g_{128} \in L_{0,7}(\mathbb{R})$. Then

$$
\operatorname{det}(A)=\left(1^{2}+(-3)^{2}+2^{2}+1^{2}\right)^{2^{6}}=15^{64}
$$

Note that by using proposition 3.1 , we can show that $A=\sum_{i=1}^{n} a_{i} g_{2^{i}} \neq$ $O_{2^{n}} \in \Delta$ is an element in the Clifford group.
4. Existence of solutions for a linear equation $x a=a x$ in $L_{0, n}(\mathbb{R})$.

Now, we will consider the existence of solutions for a simple linear equation $x a=a x$ in $L_{0, n}(\mathbb{R})$. In fact, by using the matrix representation in [2], the solution set can be obtained easily in some sense. Furthermore, the solution set of the equation can be considered in the Clifford algebra $C \ell_{0, n}$, since $L_{0, n}(\mathbb{R})$ is isomorphic to the Clifford algebra $C \ell_{0, n}$.

Theorem 4.1. For $g_{2} \in \Delta$, the equation $x g_{2}=g_{2} x$ has solutions in $L_{0, n}(\mathbb{R})$ and the solution set of the equation in $L_{0, n}(\mathbb{R})$ is

$$
\left\{\sum_{m=0}^{2^{n-2}-1} a_{m} g_{4 m+1}+\sum_{m=0}^{2^{n-2}-1} b_{m} g_{4 m+2} \mid a_{m}, b_{m} \in \mathbb{R}\right\}
$$

Proof. Let

$$
x=\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right) \in M_{2^{n}}(\mathbb{R})
$$

where $x_{i j} \in M_{2}(\mathbb{R})$ for all $1 \leq i, j \leq n$.
Then, the equation $x g_{2}=g_{2} x$ is equivalent with $x_{i j} E=E x_{i j}$ for all $1 \leq i, j \leq n$. Then we have

$$
x_{i j}=\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

for some $a, b \in \mathbb{R}$, which implies that all the entries $x_{i 1}$ of the first column of x are of odd type. From the construction of $L_{0, n}$ in [2], we obtain $x_{2 j 1}=O_{2}$ for all $j=1,2, \ldots, n$. Thus, x is expressed by

$$
x=\sum_{m=0}^{2^{n-2}-1} a_{m} g_{4 m+1}+\sum_{m=0}^{2^{n-2}-1} b_{m} g_{4 m+2}
$$

for some $a_{m}, b_{m} \in \mathbb{R}$.
Example 4.2. Let $n=3$. Then, the equation $x g_{2}=g_{2} x$ has solutions in $L_{0,3}(\mathbb{R})$ and the solution set of the equation in $L_{0,3}(\mathbb{R})$ is

$$
\left\{a_{0} g_{1}+b_{0} g_{2}+a_{5} g_{5}+b_{6} g_{6} \mid a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{R}\right\}
$$

References

[1] J. Gallier, Clifford Algebras, Clifford Groups, and a Generation of the Quaternions: The Pin and Spin Groups, Preprint (2002)
[2] D. Lee and Y. Song, Explicit Matrix Realization of Clifford Algebras, Adv. Appl. Clifford Algebras 23 (2013), 441-451
[3] Y. Song and D. Lee, Matrix Representations of the Low Order Real Clifford Algebras, Adv. Appl. Clifford Algebras 23 (2013), 965-980.
[4] C. P. Poole, Jr., H. A. Farach, Pauli-Dirac matrix generators of Clifford algebras, Found. of Phys. 12 (1982), 719-738.
[5] Y. Tian, Universal similarity factorization equalities over real Clifford algebras, Adv. Appl. Clifford Algebras 8 (1998), 365-402.
*
Department of Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea
E-mail: yksong@kw.ac.kr
**
College of Global General Education
Gachon University
Sungnam 461-701, Republic of Korea
E-mail: dhl221@gachon.ac.kr

[^0]: Received July 09, 2014; Accepted October 06, 2014.
 2010 Mathematics Subject Classification: Primary 15A66.
 Key words and phrases: Clifford algebra, Clifford groups, matrix representation.
 Correspondence should be addressed to Doohann Lee, dhl221@gachon.ac.kr.
 The work reported in this paper was conducted during the sabbatical year of Kwangwoon University in 2013, and this work was supported by the Gachon University research fund of 2014.

