• Title/Summary/Keyword: line regulation

Search Result 752, Processing Time 0.026 seconds

Inhibitory Effect of NAD(P)H:Quinone Oxidoreductase 1 on the Activation of Macrophages (NQO1 (NAD(P)H:quinone oxidoreductase 1)에 의한 대식세포 활성화 억제)

  • Hong, Ji;Zhang, Peng;Yoon, I Na;Kim, Ho
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.873-878
    • /
    • 2017
  • We previously reported that NAD(P)H:quinone oxidoreductase 1 (NQO1)-knockout (KO) mice exhibited spontaneous inflammation in the gut. We also found that NQO1-KO mice showed highly increased inflammatory responses compared with NQO1-WT control mice when subjected to DSS-induced experimental colitis. In a Clostridium difficile toxin-induced mouse enteritis model, NQO1-KO mice were also sensitive compared with NQO1-WT mice. Moreover, numerous studies have shown that NQO1 is functionally associated with immune regulation. Here, we assessed whether NQO1 defects can alter macrophage activation. We found that peritoneal macrophages isolated from NQO1-KO mice produced more IL-6 and $TNF-{\alpha}$ than those isolated from NQO1-WT mice. Moreover, the dicumarol-induced inhibition of NQO1 significantly increased IL-6 and $TNF-{\alpha}$ production in peritoneal macrophages isolated from NQO1-WT mice, as well as in the cultured mouse macrophage cell line, RAW264.7. These results indicate that NQO1 may negatively regulate the activation of macrophages. Knockout or chemical inhibition of NQO1 markedly reduced the expression of $I{\kappa}B$ (inhibitor of $NF{\kappa}B$) in both mouse peritoneal macrophages and RAW264.7 cells. Finally, RAW264.7 cells treated with dicumarol exhibited morphological changes reflecting macrophage activation. Our results suggest that NQO1 may suppress the $NF{\kappa}B$ pathways in macrophages, thereby suppressing the activation of these cells. Thus, immunosuppressive activity may be among the many possible functions of NQO1.

Ciglitazone, in Combination with All trans Retinoic Acid, Synergistically Induces PTEN Expression in HL-60 Cells (백혈병세포에서 PTEN 발현에 대한 Ciglitazone과 retinoic Acid의 항진 작용)

  • Lee Seung-Ho;Park Chul-Hong;Kim Byeong-Su
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.3
    • /
    • pp.171-180
    • /
    • 2006
  • Peroxisome proliferatorr-activated receptor-gamma $(PPAR{\gamma})$ must form a heterodimer with the retinoid-X receptor (RXR) to bind DNA, and its transcriptional activity is thought to be maximized by ligands specific for either receptor. Activated $(PPAR{\gamma})$ and $(PPAR{\gamma})$ ligands may influence tumor growth through regulation of the tumor suppressor PTEN. Our aim in this study was to determine whether co-stimulation with the $(PPAR{\gamma})$ ligand, ciglitazone, and RXR ligand can synergistically upregulate PTEN in human acute promyelocytic leukemia (APL) cells and consequently potentate the inhibition of cell growth and cell cycle progression of these cells. Human leukemia cell line, HL-60 cells were exposed to all-trans-retinol and ciglutazone. The PTEN expression was measured as the level of PTEN mRNA expression by RT-PCR and as the level of PTEN expression by western blot analysis. Cell cycle analysis was carried out by a propidium iodide (PI) staining method and analyzed with a FACScan. The $(PPAR{\gamma})$ ligand, ciglitazone, and the RXR ligand, retinoic acid, upregulated PTEN expression by HL-60 cells in time- and dose-dependent manners, respectively. This was significantly enhanced by a combination of both ciglitazone and retinoic acid. Moreover, these compounds synergistically induced arrests of both cell growth and the $G_l$ phase of the cell cycle. Thus, the activation of the $(PPAR{\gamma})$:RXR heterodimer may represent a regulatory pathway for human leukemia cells and there may be important roles for $(PPAR{\gamma})$ and RXR ligands in prophylactic and therapeutic approaches fur controlling leukemia through the upregulation of PTEN.

Improvement of Liver Function and Suppressed Lipid Peroxidation of Extract from Ginseng Folium and Stem in Acute $CCl_4$ Intoxicated Rats ($CCl_4$로 급성 간손상을 유도한 백서에서 인삼엽과 경추출물의 간기능 개선과 항산화 작용)

  • Lee Min Kyung;Park Sung Hye;Seo Eui Suok;Kim Ki Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1485-1489
    • /
    • 2004
  • Panax ginseng is the one of best famous phytochemical plant in the world and it's various positive effects such as antioxidant, regulation of immunity are very well known. In this study, we investigated primary the cell viability and morphological change and secondary an antioxidative effect and liver function improvement of extract from Ginseng folium and stem in CCl4 intoxicated rats. The NCTC cell line were used for cell viability and sirius red staining before the animal experiment. The female Sprague-Dawley rats (90-100g) were divided into 3 groups (Normal, AC: CCl₄ treated group, GFS: CCl₄+ extract of Ginseng folium and stem treated group) and acute liver damage was developed by one time administration of CCl₄ mixture (0.5㎖/rat). The liver tissue and sera were collected and used for quantitative measurement of enzyme activity (AST, ALT, ALP, BUN), MDA and Hyp. As a result, cell viability in GFS treated group (in concentration of 3.33-33.33㎎ GFS/200㎕ medium) was 180.9-241.0% significantly and dose dependently higher than in control group. And potential state of cell growth and differentiation and no criteria of cytoplasm lysis and nucleus breaking were observed in control and GFS group. The parameters of liver function (AST and ALP) in sera of GFS group showed significantly 93% and 67.6% lower than AC group (p<0.005-0.05). And the level of ALT and BUN showed fast similar in AC group and GFS group. The concentration of MDA in liver was decreased 576.5% significantly in GFS group when compared with AC group (p<0.005). The content of Hyp in GFS group is merely lower than in AC group. In conclusion, the water extract of Ginseng folium and stem such as Ginseng radix may be possessed the antioxidative effect and improvement of liver function in CCl₄ intoxicated rats.

Effect of ${\alpha}-spinasterol$ Extracted from Phytolacca americanna on the Apoptosis of U937 cell line (상륙에서 추출한 ${\alpha}-spinasterol$의 백혈병세포주(U937) 자멸사 유도 효능)

  • Yang, Jun-Seok;Jeong, Sang-Hun;Kim, Ho;Han, Ung;Jin, Jae-Ho;Jung, Il-Kook;Kim, Dae-Keun;Jeong, Seung-Il;Jeong, Han-Sol;Lee, Kwang-Gyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1108-1117
    • /
    • 2007
  • To investigate the possible mechanism of ${\alpha}-spinasterol$ as a candidate of anti-cancer drug, I examined the effects of ${\alpha}-spinasterol$ on the apoptosis of U937 cells MTT assay, flow cytometric analysis, SDS-polyacrylamide gel electrophoresis, Western blot analysis, and RT-PCR were performed. ${\alpha}-spinasterol$ treatment reduced the cell viablilty of U937 cells in a dose-dependent manner, which was associated with the induction of apoptotic cell death. ${\alpha}-spinasterol$ treatment also reduced the levels of Bcl-xL anti-apoptotic protein expression and increased the levels of caspase-3, p53, pro-apoptotic protein, in U937 cells. After treatment the level of Bcl-xL, anti-apoptotic gene expression was decreased and the level of ICE pro-apoptotic gene expression was increased. These findings suggest that ${\alpha}-spinasterol$ induced the apoptotic cell death via regulation of several growth regulatory gene products. The abbreviations used are: FBS, fetal bovine serum; PBS, phosphate buffered saline; PI, propidium iodide; OD, optical density; DiOC6, 3,3-dihexyloxa carbcyanine iodide; MTT, 3 [4-5-dimethylthiazol-2-yl] -2-diphenyltetrazolium bromide.

The Role of PI3K/AKT Pathway and NADPH Oxidase 4 in Host ROS Manipulation by Toxoplasma gondii

  • Choi, Hei Gwon;Gao, Fei-Fei;Zhou, Wei;Sun, Pu-Reum;Yuk, Jae-Min;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.237-247
    • /
    • 2020
  • Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.

Inhibition of LPS Induced iNOS, COX-2 and Cytokines Expression by $Genistein-4'-O-{\alpha}-L-Rhamnopyranosyl-(1-2)-{\beta}-D-Glucopyranoside$ through the $NF-{\kappa}B$ Inactivation in RAW 264.7 Cells ($Genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$의 RAW 264.7 세포에서 $NF-{\kappa}B$ 불활성화를 통한 LPS에 의해 유도되는 iNOS, COX-2 그리고 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Kim, Ji-Yeon;Jang, Young-Pyo;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • This study were designed to evaluate the anti-inflammatory effects of $genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$ (GRG) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line. GRG significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, GRG reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and interleukin-6 (IL-6) were also reduced by GRG. Moreover, GRG attenuated the LPS-induced activation of nuclear factor-kappa B ($NF-{\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by GRG are achieved by the downregulation of $NF-{\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.

Silymarin Attenuates Invasion and Migration through the Regulation of Epithelial-mesenchymal Transition in Huh7 Cells (간암세포주에서 상피간엽전환억제를 통한 Silymarin의 침윤 및 전이 억제 효과)

  • Kim, Do-Hoon;Park, So-Jeong;Lee, Seung-Yeon;Yoon, Hyun-Seo;Park, Chung Mu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.337-344
    • /
    • 2018
  • Hepatocellular carcinoma (HCC), a major type of hepatoma, is associated with high recurrence and mortality because of its uncontrolled metastatic feature. Silymarin is a polyphenolic flavonoid from Silybum marianun (milk thistle) and exhibits anti-carcinogenic activity through modulation of the epithelial-mesenchymal transition (EMT) in several cancer cells. In this study, the inhibitory mechanism of silymarin against migration and invasion was investigated in the Huh7 HCC cell line. Wound healing and in vitro invasion assays were conducted to examine the effects of silymarin on migration and invasion. Western blot analysis was also applied to evaluate the inhibitory effects of silymarin on the EMT-related genes and their upstream signaling molecules. Silymarin inhibited the migratory and invasive activities of Huh7 cells. In addition, silymarin attenuated the protein expression levels of vimentin and matrix metalloproteinase (MMP)-9 as well as their transcription factors, Snail, and nuclear factor $(NF)-{\kappa}B$, while the expression of E-cadherin was increased by the silymarin treatment. Among the upstream signaling molecules, the phosphorylation of Akt was inhibited by the silymarin treatment, which was confirmed by the selective inhibitor, LY294002. Consequently, silymarin inhibited the invasive and migratory activities in Huh7 cells through the modulation of EMT-related gene expression by the PI3K/Akt signaling pathway, which may have potential as a chemopreventive agent against HCC metastasis.

Transcriptome Analysis of Human HaCaT Keratinicytes by Ginsenosides Rb1 and Rg1 (진세노사이드 Rb1과 Rg1에 의한 HaCaT 피부각질세포의 전사체 분석)

  • Kim, Jung Min;Cho, Won June;Yoon, Hee Seung;Bang, In Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6774-6781
    • /
    • 2014
  • This study examined the efficacy and the mechanism of action of biological response modifiers, ginsenosides Rb1 and Rg1 isolated from Panax ginseng C.A. Meyer on human keratinocytes HaCaT cell lines. A non-significant cytotoxic response was obtained in the HaCaT cell lines on treatment with various concentrations of ginsenosides Rb1 and Rg1 for different time durations. Furthermore, the global changes in the mRNA profile of HaCaT cells were investigated using DNA microarrays after stimulation with the ginsenosides Rb1 and Rg1. Ginsenosides Rb1 and Rg1 strongly increased FGF2 in HaCaT cells, and were found to be a candidate gene for antioxidant activity and elasticity. Other key candidate genes for antioxidant activity, such as FANCD2, LEPR, and FAS, also show enhanced regulation in HaCaT cells treated with ginsenoside Rb1. This study will be useful for understanding the regulatory genes involved in skin elasticity and signal transduction pathway stimulated by the ginsenoside Rb1. This paper currently focuses on the key factors regulating the interaction of anti-aging principles and skin elasticity.

Construction of fat1 Gene Expression Vector and Its Catalysis Efficiency in Bovine Fetal Fibroblast Cells

  • Liu, Boyang;Yang, Runjun;Li, Junya;Zhang, Lupei;Liu, Jing;Lu, Chunyan;Lian, Chuanjiang;Li, Zezhong;Zhang, Yong-Hong;Zhang, Liying;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.621-628
    • /
    • 2012
  • The FAT-1 protein is an n-3 fatty acid desaturase, which can recognize a range of 18- and 20-carbon n-6 substrates and transform n-6 polyunsaturated fatty acids (PUFAs) into n-3 PUFAs while n-3 PUFAs have beneficial effect on human health. Fat1 gene is the coding sequence from Caenorhabditis elegans which might play an important role on lipometabolism. To reveal the function of fat1 gene in bovine fetal fibroblast cells and gain the best cell nuclear donor for transgenic bovines, the codon of fat1 sequence was optimized based on the codon usage frequency preference of bovine muscle protein, and directionally cloned into the eukaryotic expression vector pEF-GFP. After identifying by restrictive enzyme digests with AatII/XbaI and sequencing, the fusion plasmid pEF-GFP-fat1 was identified successfully. The pEF-GFP-fat1 vector was transfected into bovine fetal fibroblast cells mediated by Lipofectamine2000$^{TM}$. The positive bovine fetal fibroblast cells were selected by G418 and detected by RT-PCR. The results showed that a 1,234 bp transcription was amplified by reverse transcription PCR and the positive transgenic fat1 cell line was successfully established. Then the expression level of fat1 gene in positive cells was detected using quantitative PCR, and the catalysis efficiency was detected by gas chromatography. The results demonstrated that the catalysis efficiency of fat1 was significantly high, which can improve the total PUFAs rich in EPA, DHA and DPA. Construction and expression of pEF-GFP-fat1 vector should be helpful for further understanding the mechanism of regulation of fat1 in vitro. It could also be the first step in the production of fat1 transgenic cattle.

PKA-Mediated Regulation of B/K Gene Transcription in PC12 Cells

  • Choi, Mi-Hyun;Kim, Ho-Shik;Choi, Sung-Ho;Kim, Mi-Young;Jang, Yoon-Seong;Jang, Young-Min;Lee, Jeong-Hwa;Jeong, Seong-Whan;Kim, In-Kyung;Kwon, Oh-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.333-339
    • /
    • 2005
  • B/K protein is a novel protein containing double C2-like domains. We examined the specific signaling pathway that regulates the transcription of B/K in PC12 cells. When the cells were treated with forskolin ($50{\mu}M$), B/K mRNA and protein levels were time-dependently decreased, reaching the lowest level at 3 or 4 hr, and thereafter returning to the control level. Chemicals such as dibutyryl-cAMP, cellpermeable cyclic AMP (cAMP) analogue and CGS21680, adenosine receptor $A_{2A}$ agonist, also repressed the B/K transcription. However, 1,9-dideoxyforskolin did not show inhibitory effect on B/K transcription, suggesting direct involvement of cAMP in the forskolin-induced inhibition of B/K transcription. Effect of forskolin, dibutyryl cAMP and CGS21680 was significantly reduced in PKA-deficient PC12 cell line (PC12-123.7). One cAMP-response element (CRE)-like sequence (B/K CLS) was found in the promoter region of B/K DNA, and electrophoretic mobility shift assay indicated its binding to CREM and CREB. Forskolin significantly suppressed the promoter activity in CHO-K1 cells transfected with the constructs containing B/K CLS, but not with the construct in which B/K CLS was mutated (AC:TG). Taken together, we suggest that the transcription of B/K gene in PC12 cells may be regulated by PKA-dependent mechanism.