Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.8.873

Inhibitory Effect of NAD(P)H:Quinone Oxidoreductase 1 on the Activation of Macrophages  

Hong, Ji (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Zhang, Peng (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Yoon, I Na (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Kim, Ho (Division of Life Science and Chemistry, College of Natural Science, Daejin University)
Publication Information
Journal of Life Science / v.27, no.8, 2017 , pp. 873-878 More about this Journal
Abstract
We previously reported that NAD(P)H:quinone oxidoreductase 1 (NQO1)-knockout (KO) mice exhibited spontaneous inflammation in the gut. We also found that NQO1-KO mice showed highly increased inflammatory responses compared with NQO1-WT control mice when subjected to DSS-induced experimental colitis. In a Clostridium difficile toxin-induced mouse enteritis model, NQO1-KO mice were also sensitive compared with NQO1-WT mice. Moreover, numerous studies have shown that NQO1 is functionally associated with immune regulation. Here, we assessed whether NQO1 defects can alter macrophage activation. We found that peritoneal macrophages isolated from NQO1-KO mice produced more IL-6 and $TNF-{\alpha}$ than those isolated from NQO1-WT mice. Moreover, the dicumarol-induced inhibition of NQO1 significantly increased IL-6 and $TNF-{\alpha}$ production in peritoneal macrophages isolated from NQO1-WT mice, as well as in the cultured mouse macrophage cell line, RAW264.7. These results indicate that NQO1 may negatively regulate the activation of macrophages. Knockout or chemical inhibition of NQO1 markedly reduced the expression of $I{\kappa}B$ (inhibitor of $NF{\kappa}B$) in both mouse peritoneal macrophages and RAW264.7 cells. Finally, RAW264.7 cells treated with dicumarol exhibited morphological changes reflecting macrophage activation. Our results suggest that NQO1 may suppress the $NF{\kappa}B$ pathways in macrophages, thereby suppressing the activation of these cells. Thus, immunosuppressive activity may be among the many possible functions of NQO1.
Keywords
Immunosuppression; IL-6; macrophage; NQO1; $TNF-{\alpha}$;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhu, H., Jia, Z., Zhang, L., Yamamoto, M., Misra, H. P., Trush, M. A. and Li, Y. 2008. Antioxidants and phase 2 enzymes in macrophages: regulation by Nrf2 signaling and protection against oxidative and electrophilic stress. Exp. Biol. Med. (Maywood) 233, 463-474.   DOI
2 Yang, H. L., Lin, S. W., Lee, C. C., Lin, K. Y., Liao, C. H., Yang, T. Y., Wang, H. M., Huang, H. C., Wu, C. R. and Hseu, Y. C. 2015. Induction of Nrf2-mediated genes by Antrodia salmonea inhibits ROS generation and inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Food Funct. 6, 230-241.
3 Berger, F., Ramirez-Hernandez, M. H. and Ziegler, M. 2004. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29, 111-118.   DOI
4 Diao, Y., Xin, Y., Zhou, Y., Li, N., Pan, X., Qi, S., Qi, Z., Xu, Y., Luo, L., Wan, H., Lan, L. and Yin, Z. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-kappaB and MAPKs activation and ROS production. Int. Immunopharmacol. 18, 12-19.
5 Hwang, J. H., Kim, D. W., Jo, E. J., Kim, Y. K., Jo, Y. S., Park, J. H., Yoo, S. K., Park, M. K., Kwak, T. H., Kho, Y. L., Han, J., Choi, H. S., Lee, S. H., Kim, J. M., Lee, I., Kyung, T., Jang, C., Chung, J., Kweon, G. R. and Shong, M. 2009. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58, 965-974.   DOI
6 Iskander, K., Li, J., Han, S., Zheng, B. and Jaiswal, A. K. 2006. NQO1 and NQO2 regulation of humoral immunity and autoimmunity. J. Biol. Chem. 281, 30917-30924.   DOI
7 Jaiswal, A. K. 2000. Regulation of genes encoding NAD(P) H:quinone oxidoreductases. Free Radic. Biol. Med. 29, 254-262.   DOI
8 Kim, H. J. and Nel, A. E. 2005. The role of phase II antioxidant enzymes in protecting memory T cells from spontaneous apoptosis in young and old mice. J. Immunol. 175, 2948-2959.   DOI
9 Kang, J., Tae, N., Min, B. S., Choe, J. and Lee, J. H. 2012. Malabaricone C suppresses lipopolysaccharide-induced inflammatory responses via inhibiting ROS-mediated Akt/IKK/NF-kappaB signaling in murine macrophages. Int. Immunopharmacol. 14, 302-310.   DOI
10 Kim, H., Kokkotou, E., Na, X., Rhee, S. H., Moyer, M. P., Pothoulakis, C. and Lamont, J. T. 2005. Clostridium difficile toxin A-induced colonocyte apoptosis involves p53-dependent p21(WAF1/CIP1) induction via p38 mitogen-activated protein kinase. Gastroenterology 129, 1875-1888.   DOI
11 Konigs, V., Jennings, R., Vogl, T., Horsthemke, M., Bachg, A. C., Xu, Y., Grobe, K., Brakebusch, C., Schwab, A., Bahler, M., Knaus, U. G. and Hanley, P. J. Mouse macrophages completely lacking Rho subfamily GTPases (RhoA, RhoB, and RhoC) have severe lamellipodial retraction defects, but robust chemotactic navigation and altered motility. J. Biol. Chem. 289, 30772-30784.
12 Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V. and Karin, M. 2005. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434, 1138-1143.   DOI
13 Long, D. J., Iskander, K., Gaikwad, A., Arin, M., Roop, D. R., Knox, R., Barrios, R. and Jaiswal, A. K. 2002. Disruption of dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2) leads to myeloid hyperplasia of bone marrow and decreased sensitivity to menadione toxicity. J. Biol. Chem. 277, 46131-46139.   DOI
14 McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. and Liu, W. F. 2013. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad Sci. USA 110, 17253-17258.   DOI
15 Park, J. B. 2003. Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp. Mol. Med. 35, 325-335.   DOI
16 Nam, H. J., Oh, A. R., Nam, S. T., Kang, J. K., Chang, J. S., Kim, D. H., Lee, J. H., Hwang, J. S., Shong, K. E., Park, M. J., Seok, H. and Kim, H. 2012. The insect peptide CopA3 inhibits lipopolysaccharide-induced macrophage activation. J. Pept. Sci. 18, 650-656.   DOI
17 Nam, S. T., Hwang, J. H., Kim, D. H., Park, M. J., Lee, I. H., Nam, H. J., Kang, J. K., Kim, S. K., Hwang, J. S., Chung, H. K., Shong, M., Lee, C. H. and Kim, H. 2014. Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells. BMB. Rep. 47, 494-499.   DOI
18 Nam, S. T., Seok, H., Kim, D. H., Nam, H. J., Kang, J. K., Eom, J. H., Lee, M. B., Kim, S. K., Park, M. J., Chang, J. S., Ha, E. M., Shong, K. E., Hwang, J. S. and Kim, H. 2012. Clostridium difficile toxin A inhibits erythropoietin receptor-mediated colonocyte focal adhesion through inactivation of Janus Kinase-2. J. Microbiol. Biotechnol. 22, 1629-1635.   DOI
19 Oh, G. S., Kim, H. J., Choi, J. H., Shen, A., Choe, S. K., Karna, A., Lee, S. H., Jo, H. J., Yang, S. H., Kwak, T. H., Lee, C. H., Park, R. and So, H. S. 2014. Pharmacological activation of NQO1 increases NAD levels and attenuates cisplatin-mediated acute kidney injury in mice. Kidney Int. 85, 547-560   DOI
20 Palming, J., Sjoholm, K., Jernas, M., Lystig, T. C., Gummesson, A., Romeo, S., Lonn, L., Lonn, M., Carlsson, B. and Carlsson, L. M. 2007. The expression of NAD(P)H:quinone oxidoreductase 1 is high in human adipose tissue, reduced by weight loss, and correlates with adiposity, insulin sensitivity, and markers of liver dysfunction. J. Clin. Endocrinol. Metab. 92, 2346-2352.   DOI
21 Pollak, N., Dolle, C. and Ziegler, M. 2007. The power to reduce: pyridine nucleotides--small molecules with a multitude of functions. Biochem. J. 402, 205-218.   DOI
22 Traver, R. D., Horikoshi, T., Danenberg, K. D., Stadlbauer, T. H., Danenberg, P. V., Ross, D. and Gibson, N. W. 1992. NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. 52, 797-802.
23 Radjendirane, V., Joseph, P., Lee, Y. H., Kimura, S., Klein-Szanto, A. J., Gonzalez, F. J. and Jaiswal, A. K. 1998. Disruption of the DT diaphorase (NQO1) gene in mice leads to increased menadione toxicity. J. Biol. Chem. 273, 7382-7389.   DOI
24 Rushworth, S. A., MacEwan, D. J. and O'Connell, M. A. 2008. Lipopolysaccharide-induced expression of NAD(P)H: quinone oxidoreductase 1 and heme oxygenase-1 protects against excessive inflammatory responses in human monocytes. J. Immunol. 181, 6730-6737.   DOI
25 Siegel, D., Anwar, A., Winski, S. L., Kepa, J. K., Zolman, K. L. and Ross, D. 2001. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol. Pharmacol. 59, 263-268.   DOI
26 Siegel, D., Yan, C. and Ross, D. 2012. NAD(P)H:quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 83, 1033-1040.   DOI
27 Stanley, A., Thompson, K., Hynes, A., Brakebusch, C. and Quondamatteo, F. 2014. NADPH oxidase complex-derived reactive oxygen species, the actin cytoskeleton, and Rho GTPases in cell migration. Antioxid. Redox Signal. 20, 2026-2042.   DOI
28 van Wetering, S., van Buul, J. D., Quik, S., Mul, F. P., Anthony, E. C., ten Klooster, J. P. Collard, J. G. and Hordijk, P. L. 2002. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci. 115, 1837-1846.